Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 29(5): 2115-2124, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688344

RESUMEN

DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.


Asunto(s)
Cuerpo Estriado/embriología , Cuerpo Estriado/metabolismo , Proteínas del Ojo/metabolismo , Neocórtex/embriología , Neocórtex/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Feto Abortado/embriología , Feto Abortado/metabolismo , Células Ependimogliales/metabolismo , Edad Gestacional , Humanos , Ventrículos Laterales/embriología , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Especificidad de la Especie
2.
Nat Neurosci ; 17(12): 1804-15, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25383901

RESUMEN

The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.


Asunto(s)
Cuerpo Estriado/embriología , Cuerpo Estriado/fisiología , Desarrollo Fetal/fisiología , Redes Reguladoras de Genes/fisiología , Potenciales de Acción/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Células HEK293 , Humanos , Técnicas de Cultivo de Órganos
3.
Nat Commun ; 5: 5611, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25425146

RESUMEN

Microglia are observed in the early developing forebrain and contribute to the regulation of neurogenesis through still unravelled mechanisms. In the developing cerebral cortex, microglia cluster in the ventricular/subventricular zone (VZ/SVZ), a region containing Cxcl12-expressing basal progenitors (BPs). Here we show that the ablation of BP as well as genetic loss of Cxcl12 affect microglia recruitment into the SVZ. Ectopic Cxcl12 expression or pharmacological blockage of CxcR4 further supports that Cxcl12/CxcR4 signalling is involved in microglial recruitment during cortical development. Furthermore, we found that cell death in the developing forebrain triggers microglial proliferation and that this is mediated by the release of macrophage migration inhibitory factor (MIF). Finally, we show that the depletion of microglia in mice lacking receptor for colony-stimulating factor-1 (Csf-1R) reduces BPs into the cerebral cortex.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Microglía/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Corteza Cerebral/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Femenino , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Células-Madre Neurales/metabolismo , Organogénesis , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal
4.
Stem Cell Rev Rep ; 9(4): 461-74, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23625190

RESUMEN

Here we present the principles and steps of a protocol that we have recently developed for the differentiation of hES/iPS cells into the authentic human striatal projection medium spiny neurons (MSNs) that die in Huntington's Disease (HD). Authenticity is judged by the convergence of multiple features within individual cells. Our procedure lasts 80 days and couples neural induction via BMP/TGF-ß inhibition with exposure to the developmental factors sonic hedgehog (SHH) and dickkopf1 (DKK-1) to drive ventral telencephalic specification, followed by terminal differentiation [1]. Authenticity of the resulting neuronal population is monitored by the appearance of FOXG1(+)/GSX2(+) progenitor cells of the lateral ganglionic eminence (LGE) at day 15-25 of differentiation, followed by appearance of CTIP2-, FOXP1- and FOXP2-positive cells at day 45. These precursor cells then mature into MAP2(+)/GABA(+) neurons with 20 % of them ultimately co-expressing the DARPP-32 and CTIP2 diagnostic markers and carrying electrophysiological properties expected for fully functional MSNs.The protocol is characterized by its replicability in at least three human pluripotent cell lines. Altogether this protocol defines a useful platform for in vitro developmental neurobiology studies, drug screening, and regenerative medicine approaches.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Neostriado/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Células Nutrientes/citología , Células Nutrientes/efectos de los fármacos , Células Nutrientes/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo
5.
Stem Cell Res ; 10(3): 417-427, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23474892

RESUMEN

We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Multipotentes/citología , Células-Madre Neurales/citología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/química , Factor de Crecimiento Epidérmico/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Factores de Transcripción SOXB1/metabolismo , Regulación hacia Arriba
6.
Development ; 140(2): 301-12, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250204

RESUMEN

Medium-sized spiny neurons (MSNs) are the only neostriatum projection neurons, and their degeneration underlies some of the clinical features of Huntington's disease. Using knowledge of human developmental biology and exposure to key neurodevelopmental molecules, human pluripotent stem (hPS) cells were induced to differentiate into MSNs. In a feeder-free adherent culture, ventral telencephalic specification is induced by BMP/TGFß inhibition and subsequent SHH/DKK1 treatment. The emerging FOXG1(+)/GSX2(+) telencephalic progenitors are then terminally differentiated, resulting in the systematic line-independent generation of FOXP1(+)/FOXP2(+)/CTIP2(+)/calbindin(+)/DARPP-32(+) MSNs. Similar to mature MSNs, these neurons carry dopamine and A2a receptors, elicit a typical firing pattern and show inhibitory postsynaptic currents, as well as dopamine neuromodulation and synaptic integration ability in vivo. When transplanted into the striatum of quinolinic acid-lesioned rats, hPS-derived neurons survive and differentiate into DARPP-32(+) neurons, leading to a restoration of apomorphine-induced rotation behavior. In summary, hPS cells can be efficiently driven to acquire a functional striatal fate using an ontogeny-recapitulating stepwise method that represents a platform for in vitro human developmental neurobiology studies and drug screening approaches.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Trasplante de Células , Células Madre Embrionarias/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Neuronas GABAérgicas/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Ácido Quinolínico/farmacología , ARN/metabolismo , Ratas , Células Madre/citología , Factores de Tiempo
7.
Neurobiol Dis ; 46(1): 41-51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22405424

RESUMEN

Neuronal disorders, like Huntington's disease (HD), are difficult to study, due to limited cell accessibility, late onset manifestations, and low availability of material. The establishment of an in vitro model that recapitulates features of the disease may help understanding the cellular and molecular events that trigger disease manifestations. Here, we describe the generation and characterization of a series of induced pluripotent stem (iPS) cells derived from patients with HD, including two rare homozygous genotypes and one heterozygous genotype. We used lentiviral technology to transfer key genes for inducing reprogramming. To confirm pluripotency and differentiation of iPS cells, we used PCR amplification and immunocytochemistry to measure the expression of marker genes in embryoid bodies and neurons. We also analyzed teratomas that formed in iPS cell-injected mice. We found that the length of the pathological CAG repeat did not increase during reprogramming, after long term growth in vitro, and after differentiation into neurons. In addition, we observed no differences between normal and mutant genotypes in reprogramming, growth rate, caspase activation or neuronal differentiation. However, we observed a significant increase in lysosomal activity in HD-iPS cells compared to control iPS cells, both during self-renewal and in iPS-derived neurons. In conclusion, we have established stable HD-iPS cell lines that can be used for investigating disease mechanisms that underlie HD. The CAG stability and lysosomal activity represent novel observations in HD-iPS cells. In the future, these cells may provide the basis for a powerful platform for drug screening and target identification in HD.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Lisosomas/genética , Proteínas del Tejido Nervioso/genética , Células Madre Pluripotentes/metabolismo , Animales , Línea Celular , Fibroblastos/citología , Fibroblastos/fisiología , Heterocigoto , Homocigoto , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Lisosomas/metabolismo , Ratones , Ratones SCID , Mutación , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Teratoma/genética , Teratoma/metabolismo , Activación Transcripcional/fisiología
8.
Neurobiol Dis ; 46(1): 30-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22227000

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an excessive expansion of a CAG trinucleotide repeat in the gene encoding the protein huntingtin, resulting in an elongated stretch of glutamines near the N-terminus of the protein. Here we report the derivation of a collection of 11 induced pluripotent stem (iPS) cell lines generated through somatic reprogramming of fibroblasts obtained from the R6/2 transgenic HD mouse line. We show that CAG expansion has no effect on reprogramming efficiency, cell proliferation rate, brain-derived neurotrophic factor level, or neurogenic potential. However, genes involved in the cholesterol biosynthesis pathway, which is altered in HD, are also affected in HD-iPS cell lines. Furthermore, we found a lysosomal gene upregulation and an increase in lysosome number in HD-iPS cell lines. These observations suggest that iPS cells from HD mice replicate some but not all of the molecular phenotypes typically observed in the disease; additionally, they do not manifest increased cell death propensity either under self-renewal or differentiated conditions. More studies will be necessary to transform a revolutionary technology into a powerful platform for drug screening approaches.


Asunto(s)
Diferenciación Celular/genética , Enfermedad de Huntington/enzimología , Células Madre Pluripotentes Inducidas/enzimología , Lisosomas/enzimología , Neuronas/enzimología , Animales , Línea Celular , Modelos Animales de Enfermedad , Proteína Huntingtina , Enfermedad de Huntington/genética , Células Madre Pluripotentes Inducidas/citología , Lisosomas/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/enzimología , Neuronas/citología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA