Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 16(11): e1009192, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33227003

RESUMEN

During infection, cellular resources are allocated toward the metabolically-demanding processes of synthesizing and secreting effector proteins that neutralize and kill invading pathogens. In Drosophila, these effectors are antimicrobial peptides (AMPs) that are produced in the fat body, an organ that also serves as a major lipid storage depot. Here we asked how activation of Toll signaling in the larval fat body perturbs lipid homeostasis to understand how cells meet the metabolic demands of the immune response. We find that genetic or physiological activation of fat body Toll signaling leads to a tissue-autonomous reduction in triglyceride storage that is paralleled by decreased transcript levels of the DGAT homolog midway, which carries out the final step of triglyceride synthesis. In contrast, Kennedy pathway enzymes that synthesize membrane phospholipids are induced. Mass spectrometry analysis revealed elevated levels of major phosphatidylcholine and phosphatidylethanolamine species in fat bodies with active Toll signaling. The ER stress mediator Xbp1 contributed to the Toll-dependent induction of Kennedy pathway enzymes, which was blunted by deleting AMP genes, thereby reducing secretory demand elicited by Toll activation. Consistent with ER stress induction, ER volume is expanded in fat body cells with active Toll signaling, as determined by transmission electron microscopy. A major functional consequence of reduced Kennedy pathway induction is an impaired immune response to bacterial infection. Our results establish that Toll signaling induces a shift in anabolic lipid metabolism to favor phospholipid synthesis and ER expansion that may serve the immediate demand for AMP synthesis and secretion but with the long-term consequence of insufficient nutrient storage.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Infecciones por Bacterias Grampositivas/inmunología , Inmunidad Innata , Metabolismo de los Lípidos/inmunología , Animales , Animales Modificados Genéticamente , Péptidos Catiónicos Antimicrobianos/genética , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Proteínas de Unión al ADN/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/inmunología , Enterococcus faecalis/inmunología , Cuerpo Adiposo/enzimología , Cuerpo Adiposo/inmunología , Femenino , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Larva/enzimología , Larva/inmunología , Metabolismo de los Lípidos/genética , Masculino , Fosfolípidos/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo , Triglicéridos/metabolismo
2.
Elife ; 92020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164744

RESUMEN

Insulin secretion from ß-cells is reduced at the onset of type-1 and during type-2 diabetes. Although inflammation and metabolic dysfunction of ß-cells elicit secretory defects associated with type-1 or type-2 diabetes, accompanying changes to insulin granules have not been established. To address this, we performed detailed functional analyses of insulin granules purified from cells subjected to model treatments that mimic type-1 and type-2 diabetic conditions and discovered striking shifts in calcium affinities and fusion characteristics. We show that this behavior is correlated with two subpopulations of insulin granules whose relative abundance is differentially shifted depending on diabetic model condition. The two types of granules have different release characteristics, distinct lipid and protein compositions, and package different secretory contents alongside insulin. This complexity of ß-cell secretory physiology establishes a direct link between granule subpopulation and type of diabetes and leads to a revised model of secretory changes in the diabetogenic process.


Diabetes is a disease that occurs when sugar levels in the blood can no longer be controlled by a hormone called insulin. People with type 1 diabetes lose the ability to produce insulin after their immune system attacks the ß-cells in their pancreas that make this hormone. People with type 2 diabetes develop the disease when ß-cells become exhausted from increased insulin demand and stop producing insulin. ß-cells store insulin in small compartments called granules. When blood sugar levels rise, these granules fuse with the cell membrane allowing ß-cells to release large quantities of insulin at once. This fusion is disrupted early in type 1 diabetes, but later in type 2: the underlying causes of these disruptions are unclear. In the laboratory, signals that trigger inflammation and molecules called fatty acids can mimic type 1 or type 2 diabetes respectively when applied to insulin-producing cells. Kreutzberger, Kiessling et al. wanted to know whether pro-inflammatory molecules and fatty acids affect insulin granules differently at the molecular level. To do this, insulin-producing cells were grown in the lab and treated with either fatty acids or pro-inflammatory molecules. The insulin granules of these cells were then isolated. Next, the composition of the granules and how they fused to lab-made membranes that mimic the cell membrane was examined. The experiments revealed that healthy ß-cells have two types of granules, each with a different version of a protein called synaptotagmin. Cells treated with molecules mimicking type 1 diabetes lost granules with synaptotagmin-7, while granules with synaptotagmin-9 were lost in cells treated with fatty acids to imitate type 2 diabetes. Each type of granule responded differently to calcium levels in the cell and secreted different molecules, indicating that each elicits a different diabetic response in the body. These findings suggest that understanding how insulin granules are formed and regulated may help find treatments for type 1 and 2 diabetes, possibly leading to therapies that reverse the loss of different types of granules. Additionally, the molecules of these granules may also be used as markers to determine the stage of diabetes. More broadly, these results show how understanding how molecule release changes with disease in different cell types may help diagnose or stage a disease.


Asunto(s)
Calcio/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Colesterol/metabolismo , Citocinas/farmacología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Exocitosis/efectos de los fármacos , Humanos , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células PC12 , Palmitatos/farmacología , Ratas , Proteínas SNARE/metabolismo , Vías Secretoras , Esfingomielinas/metabolismo , Sinaptotagminas/metabolismo
3.
Traffic ; 21(8): 552-555, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32489008

RESUMEN

On April 10, 2020, a treasured cell biologist and ardent champion of the Golgi complex passed away. This has caused deep sadness, and we seek to commemorate her remarkable scientific contributions, her warm and generous personality, and her endearing sense of humor.


Asunto(s)
Fisiología/historia , Vías Secretoras , Femenino , Aparato de Golgi/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Transporte de Proteínas
4.
Nat Commun ; 10(1): 3904, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467284

RESUMEN

Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Exocitosis , Humanos , Insulina , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso , Células PC12 , Ratas
5.
Nat Struct Mol Biol ; 25(10): 911-917, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30291360

RESUMEN

The regulated exocytotic release of neurotransmitter and hormones is accomplished by a complex protein machinery whose core consists of SNARE proteins and the calcium sensor synaptotagmin-1. We propose a mechanism in which the lipid membrane is intimately involved in coupling calcium sensing to release. We found that fusion of dense core vesicles, derived from rat PC12 cells, was strongly linked to the angle between the cytoplasmic domain of the SNARE complex and the plane of the target membrane. We propose that, as this tilt angle increases, force is exerted on the SNARE transmembrane domains to drive the merger of the two bilayers. The tilt angle markedly increased following calcium-mediated binding of synaptotagmin to membranes, strongly depended on the surface electrostatics of the membrane, and was strictly coupled to the lipid order of the target membrane.


Asunto(s)
Exocitosis , Modelos Moleculares , Sinaptotagminas/fisiología , Vesículas Transportadoras/química , Animales , Señalización del Calcio , Metabolismo de los Lípidos/fisiología , Células PC12 , Dominios Proteicos , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiología , Ratas , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas SNARE/fisiología , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiología
6.
PLoS One ; 13(9): e0198383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235209

RESUMEN

The ABC transporter ABCG1 contributes to the regulation of cholesterol efflux from cells and to the distribution of cholesterol within cells. We showed previously that ABCG1 deficiency inhibits insulin secretion by pancreatic beta cells and, based on its immunolocalization to insulin granules, proposed its essential role in forming granule membranes that are enriched in cholesterol. While we confirm elsewhere that ABCG1, alongside ABCA1 and oxysterol binding protein OSBP, supports insulin granule formation, the aim here is to clarify the localization of ABCG1 within insulin-secreting cells and to provide added insight regarding ABCG1's trafficking and sites of function. We show that stably expressed GFP-tagged ABCG1 closely mimics the distribution of endogenous ABCG1 in pancreatic INS1 cells and accumulates in the trans-Golgi network (TGN), endosomal recycling compartment (ERC) and on the cell surface but not on insulin granules, early or late endosomes. Notably, ABCG1 is short-lived, and proteasomal and lysosomal inhibitors both decrease its degradation. Following blockade of protein synthesis, GFP-tagged ABCG1 first disappears from the ER and TGN and later from the ERC and plasma membrane. In addition to aiding granule formation, our findings raise the prospect that ABCG1 may act beyond the TGN to regulate activities involving the endocytic pathway, especially as the amount of transferrin receptor is increased in ABCG1-deficient cells. Thus, ABCG1 may function at multiple intracellular sites and the plasma membrane as a roving sensor and modulator of cholesterol distribution, membrane trafficking and cholesterol efflux.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/análisis , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Línea Celular , Citoplasma/metabolismo , Citoplasma/ultraestructura , Degradación Asociada con el Retículo Endoplásmico , Endosomas/metabolismo , Endosomas/ultraestructura , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Mesotelina , Ratones , Microscopía Confocal , Transporte de Proteínas , Proteolisis , Ratas , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
7.
Mol Biol Cell ; 29(10): 1238-1257, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29540530

RESUMEN

In pancreatic ß-cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol's role in supporting granule membrane formation and function is poorly understood. ATP binding cassette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi inter-ference-induced depletion in cultured pancreatic ß-cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP), appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal endoplasmic reticulum defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging, and export levels through the actions of OSBP and ABCs G1 and A1.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Gránulos Citoplasmáticos/metabolismo , Insulina/metabolismo , Receptores de Esteroides/metabolismo , Transportador 1 de Casete de Unión a ATP/deficiencia , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/deficiencia , Animales , Colesterol/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Exocitosis/efectos de los fármacos , Fluorescencia , Técnicas de Silenciamiento del Gen , Glucosa/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Modelos Biológicos , Interferencia de ARN , Ratas , Vías Secretoras/efectos de los fármacos , beta-Ciclodextrinas/farmacología
8.
Biophys J ; 113(9): 1912-1915, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29037600

RESUMEN

Little attention has been given to how the asymmetric lipid distribution of the plasma membrane might facilitate fusion pore formation during exocytosis. Phosphatidylethanolamine (PE), a cone-shaped phospholipid, is predominantly located in the inner leaflet of the plasma membrane and has been proposed to promote membrane deformation and stabilize fusion pores during exocytotic events. To explore this possibility, we modeled exocytosis using plasma membrane SNARE-containing planar-supported bilayers and purified neuroendocrine dense core vesicles (DCVs) as fusion partners, and we examined how different PE distributions between the two leaflets of the supported bilayers affected SNARE-mediated fusion. Using total internal reflection fluorescence microscopy, the fusion of single DCVs with the planar-supported bilayer was monitored by observing DCV-associated neuropeptide Y tagged with a fluorescent protein. The time-dependent line shape of the fluorescent signal enables detection of DCV docking, fusion-pore opening, and vesicle collapse into the planar membrane. Four different distributions of PE in the planar bilayer mimicking the plasma membrane were examined: exclusively in the leaflet facing the DCVs; exclusively in the opposite leaflet; equally distributed in both leaflets; and absent from both leaflets. With PE in the leaflet facing the DCVs, overall fusion was most efficient and the extended fusion pore lifetime (0.7 s) enabled notable detection of content release preceding vesicle collapse. All other PE distributions decreased fusion efficiency, altered pore lifetime, and reduced content release. With PE exclusively in the opposite leaflet, resolution of pore opening and content release was lost.


Asunto(s)
Membrana Celular/metabolismo , Fusión de Membrana , Fosfatidiletanolaminas/metabolismo , Membrana Celular/química , Fosfatidiletanolaminas/química , Porosidad , Probabilidad
9.
Sci Adv ; 3(7): e1603208, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28776026

RESUMEN

Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.


Asunto(s)
Calcio/metabolismo , Exocitosis , Vesículas Secretoras/metabolismo , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos , Fusión de Membrana , Lípidos de la Membrana/metabolismo , Modelos Biológicos
11.
J Clin Invest ; 120(7): 2575-89, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20530872

RESUMEN

Cholesterol is a critical component of cell membranes, and cellular cholesterol levels and distribution are tightly regulated in mammals. Recent evidence has revealed a critical role for pancreatic beta cell-specific cholesterol homeostasis in insulin secretion as well as in beta cell dysfunction in diabetes and the metabolic response to thiazolidinediones (TZDs), which are antidiabetic drugs. The ATP-binding cassette transporter G1 (ABCG1) has been shown to play a role in cholesterol efflux, but its role in beta cells is currently unknown. In other cell types, ABCG1 expression is downregulated in diabetes and upregulated by TZDs. Here we have demonstrated an intracellular role for ABCG1 in beta cells. Loss of ABCG1 expression impaired insulin secretion both in vivo and in vitro, but it had no effect on cellular cholesterol content or efflux. Subcellular localization studies showed the bulk of ABCG1 protein to be present in insulin granules. Loss of ABCG1 led to altered granule morphology and reduced granule cholesterol levels. Administration of exogenous cholesterol restored granule morphology and cholesterol content and rescued insulin secretion in ABCG1-deficient islets. These findings suggest that ABCG1 acts primarily to regulate subcellular cholesterol distribution in mouse beta cells. Furthermore, islet ABCG1 expression was reduced in diabetic mice and restored by TZDs, implicating a role for regulation of islet ABCG1 expression in diabetes pathogenesis and treatment.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Transportadoras de Casetes de Unión a ATP/biosíntesis , Animales , Transporte Biológico/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Colesterol/genética , Citoplasma/genética , Citoplasma/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Células Secretoras de Insulina/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Vías Secretoras
12.
Breast Cancer Res Treat ; 124(1): 265-77, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20490654

RESUMEN

Breast cancer recurrence after an initial favorable response to treatment is a major concern for patients who receive hormonal therapies. Additional therapies are necessary to extend the time of response, and ideally, these therapies should exhibit minimal toxicity. Our study described herein focuses on a non-toxic pro-apoptotic agent, TMS (2,4,3',5'-tetramethoxystilbene), which belongs to the Resveratrol family of stilbenes. Prior study demonstrated that TMS was more effective than Resveratrol for inducing apoptosis. Additionally, TMS was effective for invoking death of relapsing breast cancer cells. As TMS was effective for reducing tumor burden, we sought to determine the mechanism by which it achieved its effects. Microarray analysis demonstrated that TMS treatment increased tubulin genes as well as stress response and pro-apoptotic genes. Fractionation studies uncovered that TMS treatment causes cleavage of Bax from the p21 form to a truncated p18 form which is associated with the induction of potent apoptosis. Co-localization analysis of immunofluorescent studies showed that Bax moved from the cytosol to the mitochondria. In addition, the pro-apoptotic proteins Noxa and Bim (EL, L, and S) were increased upon TMS treatment. Cell lines reduced for Bax, Bim, and Noxa are compromised for TMS-mediated cell death. Electron microscopy revealed evidence of nuclear condensation, formation of apoptotic bodies and DAPI staining showed evidence of DNA fragmentation. TMS treatment was able to induce both caspase-independent and caspase-dependent death via the intrinsic death pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Estilbenos/farmacología , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Neoplasias de la Mama/genética , Neoplasias de la Mama/ultraestructura , Caspasas/metabolismo , Línea Celular Tumoral , Fragmentación del ADN , Relación Dosis-Respuesta a Droga , Activación Enzimática , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , Factores de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteína X Asociada a bcl-2/genética
13.
Cell Microbiol ; 11(8): 1236-53, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19438519

RESUMEN

Salmonella enterica are facultative intracellular bacterial pathogens that proliferate within host cells in a membrane-bounded compartment, the Salmonella-containing vacuole (SCV). Intracellular replication of Salmonella is mediated by bacterial effectors translocated on to the cytoplasmic face of the SCV membrane by a type III secretion system. Some of these effectors manipulate the host endocytic pathway, resulting in the formation in epithelial cells of tubules enriched in late endosomal markers, known as Salmonella-induced filaments (SIFs). However, much less is known about possible interference of Salmonella with the secretory pathway. Here, a small-interference RNA screen revealed that secretory carrier membrane proteins (SCAMPs) 2 and 3 contribute to the maintenance of SCVs in the Golgi region of HeLa cells. This is likely to reflect a function of SCAMPs in vacuolar membrane dynamics. Moreover, SCAMP3, which accumulates on the trans-Golgi network in uninfected cells, marked tubules induced by Salmonella effectors that overlapped with SIFs but which also comprised distinct tubules lacking late endosomal proteins. We propose that SCAMP3 tubules reflect a manipulation of specific post-Golgi trafficking that might allow Salmonella to acquire nutrients and membrane, or to control host immune responses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella enterica/fisiología , Red trans-Golgi/metabolismo , Biomarcadores/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Microscopía Fluorescente , ARN Interferente Pequeño , Infecciones por Salmonella/virología , Salmonella enterica/citología , Salmonella enterica/patogenicidad , Vías Secretoras , Virulencia
14.
Mol Biol Cell ; 20(6): 1816-32, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19158374

RESUMEN

The epidermal growth factor receptor (EGFR) is targeted for lysosomal degradation by ubiquitin-mediated interactions with the ESCRTs (endosomal-sorting complexes required for transport) in multivesicular bodies (MVBs). We show that secretory carrier membrane protein, SCAMP3, localizes in part to early endosomes and negatively regulates EGFR degradation through processes that involve its ubiquitylation and interactions with ESCRTs. SCAMP3 is multimonoubiquitylated and is able to associate with Nedd4 HECT ubiquitin ligases and the ESCRT-I subunit Tsg101 via its PY and PSAP motifs, respectively. SCAMP3 also associates with the ESCRT-0 subunit Hrs. Depletion of SCAMP3 in HeLa cells by inhibitory RNA accelerated degradation of EGFR and EGF while inhibiting recycling. Conversely, overexpression enhanced EGFR recycling unless ubiquitylatable lysines, PY or PSAP motifs in SCAMP3 were mutated. Notably, dual depletions of SCAMP3 and ESCRT subunits suggest that SCAMP3 has a distinct function in parallel with the ESCRTs that regulates receptor degradation. This function may affect trafficking of receptors from prelysosomal compartments as SCAMP3 depletion appeared to sustain the incidence of EGFR-containing MVBs detected by immunoelectron microscopy. Together, our results suggest that SCAMP3, its modification with ubiquitin, and its interactions with ESCRTs coordinately regulate endosomal pathways and affect the efficiency of receptor down-regulation.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación hacia Abajo , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Mutación/genética , Fosfoproteínas/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Alineación de Secuencia , Factores de Transcripción/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura , Ubiquitinación
15.
Nat Cell Biol ; 9(12): 1381-91, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18026091

RESUMEN

Integrin-mediated adhesion regulates membrane binding sites for Rac1 within lipid rafts. Detachment of cells from the substratum triggers the clearance of rafts from the plasma membrane through caveolin-dependent internalization. The small GTPase Arf6 and microtubules also regulate Rac-dependent cell spreading and migration, but the mechanisms are poorly understood. Here we show that endocytosis of rafts after detachment requires F-actin, followed by microtubule-dependent trafficking to recycling endosomes. When cells are replated on fibronectin, rafts exit from recycling endosomes in an Arf6-dependent manner and return to the plasma membrane along microtubules. Both of these steps are required for the plasma membrane targeting of Rac1 and for its activation. These data therefore define a new membrane raft trafficking pathway that is crucial for anchorage-dependent signalling.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Endocitosis , Exocitosis , Microdominios de Membrana/fisiología , Microtúbulos/fisiología , Factor 6 de Ribosilación del ADP , Actinas/fisiología , Animales , Adhesión Celular , Forma de la Célula , Células Cultivadas , Retículo Endoplásmico/fisiología , Fibroblastos/fisiología , Fibronectinas/metabolismo , Aparato de Golgi/fisiología , Ratones , Proteína de Unión al GTP rac1/fisiología
16.
Traffic ; 7(2): 155-67, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16420524

RESUMEN

Insulin-regulated aminopeptidase (IRAP) is a marker for insulin-sensitive recycling compartments of fat and muscle cells that contain the glucose transporter isoform GLUT4. Unlike GLUT4, IRAP is expressed in many other cell types. Thus, it is a potential marker for regulated recycling compartments that are analogous to GLUT4 vesicles. In bone marrow-derived mast cells, IRAP is highly expressed and localizes to an intracellular compartment different from secretory granules. Using cell-surface biotinylation, we determined that IRAP underwent rapid redistribution to the plasma membrane on antigen/immunoglobulin E (IgE) stimulation and was re-internalized within 30 min. When granule exocytosis was inhibited, by removing extracellular calcium, adding the protein kinase C inhibitor bisindolylmaleimide or the phosphatidylinositol 3-kinase inhibitor wortmannin, IRAP redistribution was still detected in stimulated cells. However, the redistribution of IRAP required intracellular calcium. By immunofluorescence, IRAP significantly co-localized with the transferrin receptor (TfR), a marker for constitutively recycling endosomes. However, antigen/IgE stimulation did not increase TfR on the cell surface, indicating that IRAP and TfR may follow different pathways to the plasma membrane. In rat peritoneal mast cells, the distributions of IRAP and TfR overlapped to only a limited extent, indicating that overlap may decrease with cell differentiation. We propose that IRAP vesicles represent a second IgE-sensitive exocytotic compartment in mast cells, which is regulated differently from secretory granules, and that these vesicles may be similar to GLUT4 vesicles.


Asunto(s)
Aminopeptidasas/metabolismo , Mastocitos/enzimología , Animales , Antígenos/administración & dosificación , Biomarcadores/metabolismo , Compartimento Celular , Línea Celular , Membrana Celular/enzimología , Cistinil Aminopeptidasa , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Inmunoglobulina E/administración & dosificación , Mastocitos/inmunología , Mastocitos/fisiología , Ratones , Ratas , Receptores de Transferrina/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretoras/enzimología
18.
Biophys J ; 87(5): 3221-33, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15315949

RESUMEN

The membrane interactions and position of a positively charged and highly aromatic peptide derived from a secretory carrier membrane protein (SCAMP) are examined using magnetic resonance spectroscopy and several biochemical methods. This peptide (SCAMP-E) is shown to bind to membranes containing phosphatidylinositol 4,5-bisphosphate, PI(4,5)P2, and sequester PI(4,5)P2 within the plane of the membrane. Site-directed spin labeling of the SCAMP-E peptide indicates that the position and structure of membrane bound SCAMP-E are not altered by the presence of PI(4,5)P2, and that the peptide backbone is positioned within the lipid interface below the level of the lipid phosphates. A second approach using high-resolution NMR was used to generate a model for SCAMP-E bound to bicelles. This approach combined oxygen enhancements of nuclear relaxation with a computational method to dock the SCAMP-E peptide at the lipid interface. The model for SCAMP generated by NMR is consistent with the results of site-directed spin labeling and places the peptide backbone in the bilayer interfacial region and the aromatic side chains within the lipid hydrocarbon region. The charged side chains of SCAMP-E lie well within the interface with two arginine residues lying deeper than a plane defined by the position of the lipid phosphates. These data suggest that SCAMP-E interacts with PI(4,5)P2 through an electrostatic mechanism that does not involve specific lipid-peptide contacts. This interaction may be facilitated by the position of the positively charged side chains on SCAMP-E within a low-dielectric region of the bilayer interface.


Asunto(s)
Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/química , Fosfolípidos/química , Sitios de Unión , Hidrocarburos Aromáticos/análisis , Hidrocarburos Aromáticos/química , Membrana Dobles de Lípidos/análisis , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Membranas Artificiales , Fosfatidilinositol 4,5-Difosfato/análisis , Fosfolípidos/análisis , Unión Proteica , Marcadores de Spin
19.
Curr Protoc Protein Sci ; Chapter 4: Unit 4.1, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18429267

RESUMEN

This discussion unit describes the most common methods for cell fractionation which provides the essential ingredients for the increasing number of cell-free assays now being used in test-tube reconstructions of complex cellular events involving intercompartmental interactions. Gel filtration separates on the basis of size, centrifugation separates on the basis of size and density, and electrophoresis separates on the basis of surface charge density. Centrifugation is the most widely used procedure in cell fractionation and is the only approach commonly used to separate crude tissue homogenates (often having quite large volumes) into subfractions as starting material for more refined purification procedures. Therefore, this overview focuses primarily on fractionation of organelles by centrifugation.


Asunto(s)
Fraccionamiento Celular/métodos , Centrifugación , Cromatografía en Gel , Refractometría
20.
Curr Protoc Protein Sci ; Chapter 4: Unit 4.2, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18429268

RESUMEN

The protocols in this unit illustrate a range of different procedures that have been used to fractionate tissue homogenates. They emphasize different fractionation techniques that have been used for rat liver, an abundant tissue that has been a favorite of many investigators and has served as the source of many organelle preparations of excellent purity. For selected procedures, other examples have been given using other tissue sources (e.g., glandular tissues that maintain protein storage granules for regulated secretion) or, where particularly favorable, cultured cells. The basis (or goal) of each separation and the merits and limitations of each procedure are summarized to provide a guide for selecting among the various approaches. The large number of protocols include specific details relevant to a particular sample cell type (and in many cases a particular organelle).


Asunto(s)
Fraccionamiento Celular/métodos , Orgánulos , Adsorción , Animales , Centrifugación , Cromatografía en Gel , Digitonina/química , Electroforesis en Gel de Poliacrilamida , Lectinas/química , Proteínas de la Membrana/aislamiento & purificación , Ratas , Sacarosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA