Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exploration (Beijing) ; 4(1): 20220106, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38854488

RESUMEN

As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given. Despite recent advances in microfabrication techniques, biocompatible materials have facilitated the development of IMEs system toward non-invasive, ultra-flexible, bioresorbable, wireless and multifunctional, progress in the development of minimally invasive power sources in implantable systems has remained limited. Here three promising minimally invasive power sources summarized, including energy storage devices (biodegradable primary batteries, rechargeable batteries and supercapacitors), human body energy harvesters (nanogenerators and biofuel cells) and wireless power transfer (far-field radiofrequency radiation, near-field wireless power transfer, ultrasonic and photovoltaic power transfer). The energy storage and energy harvesting mechanism, configurational design, material selection, output power and in vivo applications are also discussed. It is expected to give a comprehensive understanding of the minimally invasive power sources driven IMEs system for painless health monitoring and biomedical therapy with long-term stable functions.

2.
Small Methods ; 8(2): e2300564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37462256

RESUMEN

Incontrovertibly there is an increasing demand for the development of benign inks suitable for fabrication of high-performing perovskite-based thin film functional layers. Nevertheless, most reported perovskite precursors rely on the use of highly toxic solvents such as acetonitrile, 2-methoxyethanol, dimethylformamide, and many others. Hence, there is a strong imperative for the development of novel and greener inks, which will facilitate smoother commercialization of technologies based on functional perovskite films. Therefore, four perovskite precursors are studied, some of which consist of up to 90% ethanol. All inks are developed to fulfill the requirements of a high-throughput deposition compatible with roll-to-roll techniques at room temperature, assisted by an air knife for instant solvent removal. Two of the inks are particularly suitable for the fabrication of high-quality and densely packed multi-crystalline (CH3 NH3 )PbI3 layers, as confirmed by numerous nanoscale spectroscopic and material characterization techniques. Additionally, large-area photoluminescence (PL) imaging is demonstrated to improve the quality of the deposited perovskite films, with a route to enhance deposition uniformity when upscaling for manufacture. The genuine potential of the developed greener perovskite inks is demonstrated with the fabrication of solar cells with power conversion efficiencies above 19.5%.

3.
Biosens Bioelectron ; 246: 115860, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039735

RESUMEN

Action potentials play a pivotal role in diverse cardiovascular physiological mechanisms. A comprehensive understanding of these intricate mechanisms necessitates a high-fidelity intracellular electrophysiological investigative approach. The amalgamation of micro-/nano-electrode arrays and electroporation confers substantial advantages in terms of high-resolution intracellular recording capabilities. Nonetheless, electroporation systems typically lack precise control, and commonly employed electroporation modes, involving tailored sequences, may escalate cellular damage and perturbation of normal physiological functions due to the multiple or higher-intensity electrical pulses. In this study, we developed an innovative electrophysiological biosensing system customized to facilitate precise single-pulse electroporation. This advancement serves to achieve optimal and uninterrupted intracellular action potential recording within cardiomyocytes. The refinement of the single-pulse electroporation technique is realized through the integration of the electroporation and assessment biosensing system, thereby ensuring a consistent and reliable means of achieving stable intracellular access. Our investigation has unveiled that the optimized single-pulse electroporation technique not only maintains robust biosafety standards but also enables the continuous capture of intracellular electrophysiological signals across an expansive three-day period. The universality of this biosensing system, adaptable to various micro/nano devices, furnishes real-time analysis and feedback concerning electroporation efficacy, guaranteeing the sustained, secure, and high-fidelity acquisition of intracellular data, thereby propelling the field of cardiovascular electrophysiological research.


Asunto(s)
Técnicas Biosensibles , Miocitos Cardíacos , Potenciales de Acción/fisiología , Miocitos Cardíacos/fisiología , Contención de Riesgos Biológicos , Electroporación
4.
Nanoscale ; 14(7): 2605-2616, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35129185

RESUMEN

The operational stability of organic-inorganic halide perovskite based solar cells is a challenge for widespread commercial adoption. The mobility of ionic species is a key contributor to perovskite instability since ion migration can lead to unfavourable changes in the crystal lattice and ultimately destabilisation of the perovskite phase. Here we study the nanoscale early-stage degradation of mixed-halide mixed-cation perovskite films under operation-like conditions using electrical scanning probe microscopy to investigate the formation of surface nanograin defects. We identify the nanograins as lead iodide and study their formation in ambient and inert environments with various optical, thermal, and electrical stress conditions in order to elucidate the different underlying degradation mechanisms. We find that the intrinsic instability is related to the polycrystalline morphology, where electrical bias stress leads to the build-up of charge at grain boundaries and lateral space charge gradients that destabilise the local perovskite lattice facilitating escape of the organic cation. This mechanism is accelerated by enhanced ionic mobility under optical excitation. Our findings highlight the importance of inhibiting the formation of local charge imbalance, either through compositions preventing ionic redistribution or local grain boundary passivation, in order to extend operational stability in perovskite photovoltaics.

5.
Small ; 18(17): e2105281, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119208

RESUMEN

Heart diseases are currently the leading cause of death worldwide. The ability to create cardiovascular tissue has numerous applications in understanding tissue development, disease progression, pharmacological testing, bio-actuators, and transplantation; yet current cardiovascular tissue engineering (CTE) methods are limited. However, there have been emerging developments in the bioelectronics field, with the creation of biomimetic devices that can intimately interact with cardiac cells, provide monitoring capabilities, and regulate tissue formation. Combining bioelectronics with cardiac tissue engineering can overcome current limitations and produce physiologically relevant tissue that can be used in various areas of cardiovascular research and medicine. This review highlights the recent advances in cardiovascular-based bioelectronics. First, cardiac tissue engineering and the potential of bioelectronic therapies for cardiovascular diseases are discussed. Second, advantageous bioelectronic materials for CTE and implantation and their properties are reviewed. Third, several representative cardiovascular tissue-bioelectronic interface models and the beneficial functions that bioelectronics can demonstrate in in vitro and in vivo applications are explored. Finally, the prospects and remaining challenges for clinical application are discussed.


Asunto(s)
Materiales Biomiméticos , Ingeniería de Tejidos , Electrónica
6.
Nano Lett ; 22(3): 979-988, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35061402

RESUMEN

Antisolvent-assisted spin coating has been widely used for fabricating metal halide perovskite films with smooth and compact morphology. However, localized nanoscale inhomogeneities exist in these films owing to rapid crystallization, undermining their overall optoelectronic performance. Here, we show that by relaxing the requirement for film smoothness, outstanding film quality can be obtained simply through a post-annealing grain growth process without passivation agents. The morphological changes, driven by a vaporized methylammonium chloride (MACl)-dimethylformamide (DMF) solution, lead to comprehensive defect elimination. Our nanoscale characterization visualizes the local defective clusters in the as-deposited film and their elimination following treatment, which couples with the observation of emissive grain boundaries and excellent inter- and intragrain optoelectronic uniformity in the polycrystalline film. Overcoming these performance-limiting inhomogeneities results in the enhancement of the photoresponse to low-light (<0.1 mW cm-2) illumination by up to 40-fold, yielding high-performance photodiodes with superior low-light detection.

7.
Adv Sci (Weinh) ; 9(2): e2101746, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34755497

RESUMEN

Curved X-ray detectors have the potential to revolutionize diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC70 BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood. Herein, high P3HT molecular weights (>40 kDa) are identified to allow increased intermolecular bonding and chain entanglements, resulting in X-ray detectors that can be curved to a radius as low as 1.3 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard dark current of <1 pA mm-2 and a sensitivity of ≈ 0.17 µC Gy-1 cm-2 . This study identifies a crucial missing link in the development of curved detectors, namely the importance of the molecular weight of the polymer semiconductors used.

9.
Sci Rep ; 11(1): 14831, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290292

RESUMEN

Controlling the radiative properties of monolayer transition metal dichalcogenides is key to the development of atomically thin optoelectronic devices applicable to a wide range of industries. A common problem for exfoliated materials is the inherent disorder causing spatially varying nonradiative losses and therefore inhomogeneity. Here we demonstrate a five-fold reduction in the spatial inhomogeneity in monolayer WS2, resulting in enhanced overall photoluminescence emission and quality of WS2 flakes, by using an ambient-compatible laser illumination process. We propose a method to quantify spatial uniformity using statistics of spectral photoluminescence mapping. Analysis of the dynamic spectral changes shows that the enhancement is due to a spatially sensitive reduction of the charged exciton spectral weighting. The methods presented here are based on widely adopted instrumentation. They can be easily automated, making them ideal candidates for quality assessment of transition metal dichalcogenide materials, both in the laboratory and industrial environments.

10.
Nat Commun ; 12(1): 152, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420070

RESUMEN

Ferroelectric materials exhibit a phase transition to a paraelectric state driven by temperature - called the Curie transition. In conventional ferroelectrics, the Curie transition is caused by a change in crystal symmetry, while the material itself remains a continuous three-dimensional solid crystal. However, ferroelectric polymers behave differently. Polymeric materials are typically of semi-crystalline nature, meaning that they are an intermixture of crystalline and amorphous regions. Here, we demonstrate that the semi-crystalline morphology of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) strongly affects its Curie transition, as not only a change in crystal symmetry but also in morphology occurs. We demonstrate, by high-resolution nanomechanical measurements, that the semi-crystalline microstructure in the paraelectric state is formed by crystalline domains embedded into a softer amorphous phase. Using in situ X-ray diffraction measurements, we show that the local electromechanical response of the crystalline domains is counterbalanced by the amorphous phase, effectively masking its macroscopic effect. Our quantitative multi-scale characterisations unite the nano- and macroscopic material properties of the ferroelectric polymer P(VDF-TrFE) through its semi-crystalline nature.

11.
Matter ; 4(3): 969-985, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33398259

RESUMEN

Smart contact lenses attract extensive interests due to their capability of directly monitoring physiological and ambient information. However, previous demonstrations usually lacked efficient sensor modalities, facile fabrication process, mechanical stability, or biocompatibility. Here, we demonstrate a flexible approach for fabrication of multifunctional smart contact lenses with an ultrathin MoS2 transistors-based serpentine mesh sensor system. The integrated sensor systems contain a photodetector for receiving optical information, a glucose sensor for monitoring glucose level directly from tear fluid, and a temperature sensor for diagnosing potential corneal disease. Unlike traditional sensors and circuit chips sandwiched in the lens substrate, this serpentine mesh sensor system can be directly mounted onto the lenses and maintain direct contact with tears, delivering high detection sensitivity, while being mechanically robust and not interfering with either blinking or vision. Furthermore, the in vitro cytotoxicity tests reveal good biocompatibility, thus holding promise as next-generation soft electronics for healthcare and medical applications.

12.
ACS Appl Mater Interfaces ; 12(42): 48057-48066, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32969644

RESUMEN

Nanoscale investigations by scanning probe microscopy have provided major contributions to the rapid development of organic-inorganic halide perovskites (OIHP) as optoelectronic devices. Further improvement of device level properties requires a deeper understanding of the performance-limiting mechanisms such as ion migration, phase segregation, and their effects on charge extraction both at the nano- and macroscale. Here, we have studied the dynamic electrical response of Cs0.05(FA0.83MA0.17)0.95PbI3-xBrx perovskite structures by employing conventional and microsecond time-resolved open-loop Kelvin probe force microscopy (KPFM). Our results indicate strong negative charge carrier trapping upon illumination and very slow (>1 s) relaxation of charges at the grain boundaries. The fast electronic recombination and transport dynamics on the microsecond scale probed by time-resolved open-loop KPFM show diffusion of charge carriers toward grain boundaries and indicate locally higher recombination rates because of intrinsic compositional heterogeneity. The nanoscale electrostatic effects revealed are summarized in a collective model for mixed-halide CsFAMA. Results on multilayer solar cell structures draw direct relations between nanoscale ionic transport, charge accumulation, recombination properties, and the final device performance. Our findings extend the current understanding of complex charge carrier dynamics in stable multication OIHP structures.

13.
Biotechnol Bioeng ; 117(1): 291-299, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589342

RESUMEN

A large amount of research within organic biosensors is dominated by organic electrochemical transistors (OECTs) that use conducting polymers such as poly(3,4-ethylene dioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). Despite the recent advances in OECT-based biosensors, the sensing is solely reliant on the amperometric detection of the bioanalytes. This is typically accompanied by large undesirable parasitic electrical signals from the electroactive components in the electrolyte. Herein, we present the use of in situ resonance Raman spectroscopy to probe subtle molecular structural changes of PEDOT:PSS associated with its doping level. We demonstrate how such doping level changes of PEDOT:PSS can be used, for the first time, on operational OECTs for sensitive and selective metabolite sensing while simultaneously performing amperometric detection of the analyte. We test the sensitivity by molecularly sensing a lowest glucose concentration of 0.02 mM in phosphate-buffered saline solution. By changing the electrolyte to cell culture media, the selectivity of in situ resonance Raman spectroscopy is emphasized as it remains unaffected by other electroactive components in the electrolyte. The application of this molecular structural probe highlights the importance of developing biosensing probes that benefit from high sensitivity of the material's structural and electrical properties while being complimentary with the electronic methods of detection.


Asunto(s)
Técnicas Biosensibles/instrumentación , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Sondas Moleculares/química , Polímeros/química , Poliestirenos/química , Biotecnología , Medios de Cultivo/análisis , Medios de Cultivo/metabolismo , Diseño de Equipo , Glucosa/análisis , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo
14.
Sensors (Basel) ; 19(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261641

RESUMEN

Spatial characterisation methods for photodetectors and other optoelectronic devices are necessary for determining local performance, as well as detecting local defects and the non-uniformities of devices. Light beam induced current measurements provide local performance information about devices at their actual operating conditions. Compressed sensing current mapping offers additional specific advantages, such as high speed without the use of complicated experimental layouts or lock-in amplifiers. In this work, the signal amplification advantages of compressed sensing current mapping are presented. It is demonstrated that the sparsity of the patterns used for compressive sampling can be controlled to achieve significant signal amplification of at least two orders of magnitude, while maintaining or increasing the accuracy of measurements. Accurate measurements can be acquired even when a point-by-point scan yields high noise levels, which distort the accuracy of measurements. Pixel-by-pixel comparisons of photocurrent maps are realised using different sensing matrices and reconstruction algorithms for different samples. The results additionally demonstrate that such an optical system would be ideal for investigating compressed sensing procedures for other optical measurement applications, where experimental noise is included.

15.
Sci Technol Adv Mater ; 20(1): 42-43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30719185
16.
J Zoo Wildl Med ; 48(1): 245-249, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28363075

RESUMEN

A 10-yr-old male, neutered gray wolf ( Canis lupus ) was presented for atrophy of the temporalis and masseter muscles. Clinical signs and magnetic resonance imaging were consistent with a myopathy. Positive serology for antibody titers directed against Type 2M myofibers, and the observation of a mixed mononuclear inflammatory cell infiltrate along with eosinophils and neutrophils within the temporalis muscle, were diagnostic for masticatory muscle myositis. Importantly, protozoal myositis was excluded based on other clinicopathologic data. The case highlights the potential for immune-mediated polymyositis in canids other than the domesticated dog ( Canis lupus familaris). Additionally, awareness of a diet in which raw meat is used should prompt a thorough investigation for an underlying infectious myositis in the gray wolf.


Asunto(s)
Músculos Masticadores/patología , Miositis/veterinaria , Lobos , Animales , Masculino , Miositis/diagnóstico , Miositis/tratamiento farmacológico , Prednisona/uso terapéutico
17.
Data Brief ; 11: 44-48, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28127582

RESUMEN

The data presented in this article is related to the research article entitled "Fabrication of air-stable, large-area, PCDTBT:PC70BM polymer solar cell modules using a custom built slot-die coater" (D.I. Kutsarov, E. New, F. Bausi, A. Zoladek-Lemanczyk, F.A. Castro, S.R.P. Silva, 2016) [1]. The repository name and reference number for the raw data from the abovementioned publication can be found under: https://doi.org/10.15126/surreydata.00813106. In this data in brief article, additional information about the absorption properties of PCDTBT:PC70BM layers deposited from a 12.5 mg/ml and 15 mg/ml photoactive layer dispersion are shown. Additionally, the best and average J-V curves of single cells, fabricated from the 10 and 15 mg/ml dispersions, are presented.

18.
Nanoscale ; 9(8): 2723-2731, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28078339

RESUMEN

Novel optoelectronic devices rely on complex nanomaterial systems where the nanoscale morphology and local chemical composition are critical to performance. However, the lack of analytical techniques that can directly probe these structure-property relationships at the nanoscale presents a major obstacle to device development. In this work, we present a novel method for non-destructive, simultaneous mapping of the morphology, chemical composition and photoelectrical properties with <20 nm spatial resolution by combining plasmonic optical signal enhancement with electrical-mode scanning probe microscopy. We demonstrate that this combined approach offers subsurface sensitivity that can be exploited to provide molecular information with a nanoscale resolution in all three spatial dimensions. By applying the technique to an organic solar cell device, we show that the inferred surface and subsurface composition distribution correlates strongly with the local photocurrent generation and explains macroscopic device performance. For instance, the direct measurement of fullerene phase purity can distinguish between high purity aggregates that lead to poor performance and lower purity aggregates (fullerene intercalated with polymer) that result in strong photocurrent generation and collection. We show that the reliable determination of the structure-property relationship at the nanoscale can remove ambiguity from macroscopic device data and support the identification of the best routes for device optimisation. The multi-parameter measurement approach demonstrated herein is expected to play a significant role in guiding the rational design of nanomaterial-based optoelectronic devices, by opening a new realm of possibilities for advanced investigation via the combination of nanoscale optical spectroscopy with a whole range of scanning probe microscopy modes.

19.
Nat Commun ; 7: 13531, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27874001

RESUMEN

Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

20.
Sci Rep ; 6: 33057, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27619423

RESUMEN

Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA