Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Animals (Basel) ; 14(20)2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39457928

RESUMEN

The impact of vessels on dolphin populations has been extensively studied worldwide. The common dolphin, Delphinus delphis, has been observed in the Tagus estuary for the past two centuries, and during the last several years, these sightings seem to have increased. This area has high levels of maritime traffic throughout the year, both commercial and recreational. To understand the possible effects of vessel traffic on dolphins' behavior, land-based observations were carried out from March 2022 to March 2023. For a total of 67 events (48.9 h of dolphin sightings), differences in behavioral budgets were noted. Although "neutral reaction" was the most observed response when vessels were in the vicinity of dolphins, "negative reaction" was also common and five times more abundant than "positive reaction". The GEE model showed statistical differences between these reaction types (positive, neutral, and negative). Markov chains' analysis revealed distinct patterns in the behavioral transition probabilities, as dolphins were more likely to switch to a traveling state when vessels were nearby. This study is the first step towards understanding a potential impact source in the area since it is expected that tourism companies expand due to the increase in dolphin sightings in the estuary.

2.
Front Chem ; 12: 1425903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268007

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is the major bacterial cause of diarrheal diseases in pigs, particularly at young ages, resulting in significant costs to swine farming. The pathogenicity of ETEC is largely dependent on the presence of fimbriae and the ability to produce toxins. Fimbriae are responsible for their initial adhesion to the intestinal epithelial cells, leading to the onset of infection. In particular, the F4 type (K88) fimbriae are often attributed to neonatal infections and have also been associated with post-weaning diarrheal infections. This disease is traditionally prevented or treated with antibiotics, but their use is being severely restricted due to the emergence of resistant bacteria and their impact on human health. Emerging approaches such as aptamers that target the F4-type fimbriae and block the initial ETEC adhesion are a promising alternative. The aim of this study is to assess the effectiveness of two aptamers, Apt31 and Apt37, in controlling ETEC infection in the G. mellonella in vivo model. Initially, the dissociation constant (KD) of each aptamer against ETEC was established using real-time quantitative PCR methodology. Subsequently, different concentrations of the aptamers were injected into Galleria mellonella to study their toxicity. Afterwards, the anti-ETEC potential of Apt31 and Apt37 was assessed in the larvae model. The determined KD was 81.79 nM (95% CI: 31.21-199.4 nM) and 50.71 nM (95% CI: 26.52-96.15 nM) for the Apt31 and Apt37, respectively, showing no statistical difference. No toxicity was observed in G. mellonella following injection with both aptamers at any concentration. However, the administration of Apt31 together with ETEC-F4+ in G. mellonella resulted in a significant improvement of approximately 30% in both larvae survival and health index compared to ETEC-F4+ alone. These findings suggest that aptamers have promising inhibitory effect against ETEC infections and pave the way for additional in vivo studies.

3.
Microb Ecol ; 87(1): 103, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088119

RESUMEN

Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.


Asunto(s)
Bacterias , Hongos , Microbiota , Phoeniceae , Microbiología del Suelo , Phoeniceae/microbiología , Phoeniceae/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/fisiología , Genotipo , Raíces de Plantas/microbiología , Suelo/química
4.
Foods ; 13(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998601

RESUMEN

Several multiplex approaches for the simultaneous detection of pathogens in food have been developed in recent years, but the use of a single enrichment medium remains a problem. In this study, six enrichment broths (five non-selective media, tryptic soy broth (TSB), brain heart infusion broth (BHI), buffered peptone water (BPW), universal pre-enrichment broth (UPB), no. 17 broth, and a selective, Salmonella Escherichia Listeria broth (SEL)), were studied for the simultaneous detection of E. coli O157:H7, Salmonella spp., and L. monocytogenes, to validate the suitable enrichment broth to be used for the detection methods. Different ratios of E. coli O157:H7, Salmonella spp., and L. monocytogenes were used. Almost all non-selective broths evaluated in this study showed similar growth parameters and profiles among each other. The only selective enrichment broth under analysis (SEL) showed distinct growth features compared to the non-selective media, allowing for a slower but balanced growth of the three pathogens, which could be beneficial in preventing the overgrowth of fast-growing bacteria. In addition, when tested in ground beef samples, SEL broth seems to be the most distinctive medium with a balanced growth pattern observed for the three pathogens. Overall, this study is intended to provide the basis for the selection of suitable enrichment broths according to the technology detection to be used, the desired time of enrichment, and the expected balanced concentration of pathogens.

6.
Stem Cell Res Ther ; 15(1): 168, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886849

RESUMEN

BACKGROUND: Mechanical stimulation (MS) significantly increases the release of adenine and uracil nucleotides from bone marrow-derived mesenchymal stem cells (BM-MSCs) undergoing osteogenic differentiation. Released nucleotides acting via ionotropic P2X7 and metabotropic P2Y6 purinoceptors sensitive to ATP and UDP, respectively, control the osteogenic commitment of BM-MSCs and, thus, bone growth and remodelling. Yet, this mechanism is impaired in post-menopausal (Pm)-derived BM-MSCs, mostly because NTPDase3 overexpression decreases the extracellular accumulation of nucleotides below the levels required to activate plasma membrane-bound P2 purinoceptors. This prompted us to investigate whether in vitro MS of BM-MSCs from Pm women could rehabilitate their osteogenic commitment and whether xenotransplantation of MS purinome-primed Pm cells promote repair of critical bone defects in an in vivo animal model. METHODS: BM-MSCs were harvested from the neck of femora of Pm women (70 ± 3 years old) undergoing total hip replacement. The cells grew, for 35 days, in an osteogenic-inducing medium either submitted (SS) or not (CTR) to MS (90 r.p.m. for 30 min) twice a week. Increases in alkaline phosphatase activity and in the amount of osteogenic transcription factors, osterix and osteopontin, denoted osteogenic cells differentiation, while bone nodules formation was ascertain by the alizarin red-staining assay. The luciferin-luciferase bioluminescence assay was used to quantify extracellular ATP. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC. The density of P2Y6 and P2X7 purinoceptors in the cells was assessed by immunofluorescence confocal microscopy. MS-stimulated BM-MSCs from Pm women were xenotransplanted into critical bone defects drilled in the great trochanter of femora of one-year female Wistar rats; bone repair was assessed by histological analysis 10 days after xenotransplantation. RESULTS: MS-stimulated Pm BM-MSCs in culture (i) release 1.6-fold higher ATP amounts, (ii) overexpress P2X7 and P2Y6 purinoceptors, (iii) exhibit higher alkaline phosphatase activity and overexpress the osteogenic transcription factors, osterix and osteopontin, and (iv) form larger bone nodules, than CTR cells. Selective blockage of P2X7 and P2Y6 purinoceptors with A438079 (3 µM) and MRS 2578 (0.1 µM), respectively, prevented the osteogenic commitment of cultured Pm BM-MSCs. Xenotransplanted MS purinome-primed Pm BM-MSCs accelerated the repair of critical bone defects in the in vivo rat model. CONCLUSIONS: Data suggest that in vitro MS restores the purinergic cell-to-cell communication fostering the osteogenic differentiation and osteointegration of BM-MSCs from Pm women, a strategy that may be used in bone regeneration and repair tactics.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Posmenopausia , Femenino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Osteogénesis/efectos de los fármacos , Animales , Anciano , Ratas , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Factor de Transcripción Sp7/metabolismo , Factor de Transcripción Sp7/genética , Células Cultivadas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratas Wistar
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732135

RESUMEN

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Asunto(s)
Doxorrubicina , Fibronectinas , Glioblastoma , Ácido Hialurónico , Hidrogeles , Oligopéptidos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Oligopéptidos/química , Oligopéptidos/farmacología , Fibronectinas/metabolismo , Fibronectinas/antagonistas & inhibidores , Hidrogeles/química , Línea Celular Tumoral , Ácido Hialurónico/química , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Liposomas/química , Apoptosis/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo
8.
Gastroenterology ; 167(4): 718-732.e18, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729450

RESUMEN

BACKGROUND & AIMS: Acinar-to-ductal metaplasia (ADM) is crucial in the development of pancreatic ductal adenocarcinoma. However, our understanding of the induction and resolution of ADM remains limited. We conducted comparative transcriptome analyses to identify conserved mechanisms of ADM in mouse and human. METHODS: We identified Sox4 among the top up-regulated genes. We validated the analysis by RNA in situ hybridization. We performed experiments in mice with acinar-specific deletion of Sox4 (Ptf1a: CreER; Rosa26-LSL-YFPLSL-YFP; Sox4fl/fl) with and without an activating mutation in Kras (KrasLSL-G12D/+). Mice were given caerulein to induce pancreatitis. We performed phenotypic analysis by immunohistochemistry, tissue decellularization, and single-cell RNA sequencing. RESULTS: We demonstrated that Sox4 is reactivated in ADM and pancreatic intraepithelial neoplasias. Contrary to findings in other tissues, Sox4 actually counteracts cellular dedifferentiation and helps maintain tissue homeostasis. Moreover, our investigations unveiled the indispensable role of Sox4 in the specification of mucin-producing cells and tuft-like cells from acinar cells. We identified Sox4-dependent non-cell-autonomous mechanisms regulating the stromal reaction during disease progression. Notably, Sox4-inferred targets are activated upon KRAS inactivation and tumor regression. CONCLUSIONS: Our results indicate that our transcriptome analysis can be used to investigate conserved mechanisms of tissue injury. We demonstrate that Sox4 restrains acinar dedifferentiation and is necessary for the specification of acinar-derived metaplastic cells in pancreatic injury and cancer initiation and is activated upon Kras ablation and tumor regression in mice. By uncovering novel potential strategies to promote tissue homeostasis, our findings offer new avenues for preventing the development of pancreatic ductal adenocarcinoma.


Asunto(s)
Células Acinares , Carcinoma Ductal Pancreático , Desdiferenciación Celular , Ceruletida , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Acinares/patología , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Metaplasia/genética , Metaplasia/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ratones , Humanos , Pancreatitis/patología , Pancreatitis/genética , Pancreatitis/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Modelos Animales de Enfermedad , Páncreas/patología , Páncreas/metabolismo , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Carcinoma in Situ/patología , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Transcriptoma
9.
Pathogens ; 13(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38668275

RESUMEN

The importance of addressing the problem of biofilms in farm, wild, and companion animals lies in their pervasive impact on animal health and welfare. Biofilms, as resilient communities of microorganisms, pose a persistent challenge in causing infections and complicating treatment strategies. Recognizing and understanding the importance of mitigating biofilm formation is critical to ensuring the welfare of animals in a variety of settings, from farms to the wild and companion animals. Effectively addressing this issue not only improves the overall health of individual animals, but also contributes to the broader goals of sustainable agriculture, wildlife conservation, and responsible pet ownership. This review examines the current understanding of biofilm formation in animal diseases and elucidates the complex processes involved. Recognizing the limitations of traditional antibiotic treatments, mechanisms of resistance associated with biofilms are explored. The focus is on alternative therapeutic strategies to control biofilm, with illuminating case studies providing valuable context and practical insights. In conclusion, the review highlights the importance of exploring emerging approaches to mitigate biofilm formation in animals. It consolidates existing knowledge, highlights gaps in understanding, and encourages further research to address this critical facet of animal health. The comprehensive perspective provided by this review serves as a foundation for future investigations and interventions to improve the management of biofilm-associated infections in diverse animal populations.

10.
Foodborne Pathog Dis ; 21(5): 298-305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484326

RESUMEN

Salmonella spp. is among the most central etiological agents in foodborne bacterial disorders. To identify Salmonella spp., numerous new molecular techniques have been developed conversely to the traditional culture-based methods. In this work, a new peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method was developed for the specific detection of Salmonella species, allowing a faster analysis compared with the traditional methods (ISO 6579-1: 2017). The method was optimized based on a novel PNA probe (SalPNA1692) combined with a blocker probe to detect Salmonella in food samples through an assessment of diverse-rich and selective enrichment broths. Our findings indicated that the best outcome was obtained using a 24-h pre-enrichment step in buffered peptone water, followed by RambaQuick broth selective enrichment for 16 h. For the enrichment step performance validation, fresh ground beef was artificially contaminated with two ranges of concentration of inoculum: a low level (0.2-2 colony-forming units [CFUs]/25 g) and a high level (2-10 CFUs/25 g). The new PNA-FISH method presented a specificity of 100% and a detection limit of 0.5 CFU/25 g of food sample, which confirms the great potential of applying PNA probes in food analysis.


Asunto(s)
Microbiología de Alimentos , Hibridación Fluorescente in Situ , Ácidos Nucleicos de Péptidos , Salmonella , Hibridación Fluorescente in Situ/métodos , Salmonella/aislamiento & purificación , Salmonella/genética , Microbiología de Alimentos/métodos , Animales , Contaminación de Alimentos/análisis , Bovinos , Sensibilidad y Especificidad , Límite de Detección , Carne Roja/microbiología
11.
Vet Microbiol ; 292: 110056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537400

RESUMEN

Klebsiella spp. are important pathogens of humans and companion animals such as cats and dogs, capable of causing severe life-threatening diseases. The aim of this study was to characterize the molecular and phenotypic properties of Klebsiella pneumoniae and Klebsiella oxytoca isolated from ill companion animals by whole genome sequencing, followed by in vitro assessment of biofilm formation and in vivo pathogenicity using the Galleria mellonella model. Two LPS O-types were identified for all the K. pneumoniae isolates tested (O3B and O1/O2v2) and only one for K. oxytoca isolates (OL104), and the most common STs found were ST11 and ST266. Furthermore, a high diversity of K-locus types was found for K. pneumoniae (KL102; KL105; KL31, and KL13). Within K. pneumoniae, one specific O/K/ST-types combination (i.e., KL105-ST11-O1/O2v2) showed results that were of concern, as it exhibited a high inflammatory response at 12 h post-infection in G. mellonella with 80% of the larvae dead at 72 h post-infection. This virulence potential, on the other hand, did not appear to be directly related to the biofilm-forming capacity. Also, virulence and resistance scores obtained for this set of strains did surpass score 1. The present study demonstrated that Klebsiella spp. isolated from companion animals belonging to STs that can cause human infections and present virulence on an invertebrate model. Thus, this study underscores the role of dogs and cats as reservoirs of resistant Klebsiella spp. that could potentially be transmitted to humans.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Infecciones por Klebsiella , Gatos , Perros , Humanos , Animales , Virulencia , Klebsiella pneumoniae , Klebsiella oxytoca/genética , Portugal/epidemiología , Enfermedades de los Gatos/epidemiología , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/veterinaria , Enfermedades de los Perros/epidemiología , Antibacterianos , beta-Lactamasas
12.
Microorganisms ; 12(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399635

RESUMEN

Flagellum-mediated motility has been suggested to contribute to virulence by allowing bacteria to colonize and spread to new surfaces. In Salmonella enterica and Escherichia coli species, mutants affected by their flagellar motility have shown a reduced ability to form biofilms. While it is known that some species might act as co-aggregation factors for bacterial adhesion, studies of food-related biofilms have been limited to single-species biofilms and short biofilm formation periods. To assess the contribution of flagella and flagellum-based motility to adhesion and biofilm formation, two Salmonella and E. coli mutants with different flagellar phenotypes were produced: the fliC mutants, which do not produce flagella, and the motAB mutants, which are non-motile. The ability of wild-type and mutant strains to form biofilms was compared, and their relative fitness was determined in two-species biofilms with other foodborne pathogens. Our results showed a defective and significant behavior of E. coli in initial surface colonization (p < 0.05), which delayed single-species biofilm formation. Salmonella mutants were not affected by the ability to form biofilm (p > 0.05). Regarding the effect of motility/flagellum absence on bacterial fitness, none of the mutant strains seems to have their relative fitness affected in the presence of a competing species. Although the absence of motility may eventually delay initial colonization, this study suggests that motility is not essential for biofilm formation and does not have a strong impact on bacteria's fitness when a competing species is present.

13.
Cancers (Basel) ; 16(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275875

RESUMEN

The long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR) is associated with oncogenic features in bladder cancer and is predictive of poor clinical outcomes in patients diagnosed with this disease. In this study, we evaluated the impact of the HOTAIR single nucleotide polymorphisms rs920778 and rs12826786 on bladder cancer risk and survival. This case-control study included 106 bladder cancer patients and 199 cancer-free controls. Polymorphisms were evaluated through PCR-restriction fragment length polymorphism. The odds ratio and 95% confidence intervals were tested using univariable and multivariable logistic regressions. The effects on patient survival were evaluated using the log-rank test and Cox regression models. Our data showed that the HOTAIR rs920778 and rs12826786 genetic variants are not associated with the risk of developing bladder cancer. Nevertheless, survival analyses suggested that the HOTAIR rs920778 TT genotype and rs12826786 CC genotype are associated with increased survival in male bladder cancer patients and in patients, both male and female, who have primary tumors with a pathological stage of pT2. Together, these results suggest that, despite not being associated with bladder cancer risk, HOTAIR rs920778 and rs12826786 polymorphisms might represent new prognostic factors in this type of cancer. This is particularly important as these polymorphisms might be easily evaluated in bladder cancer patients in a minimally invasive manner to better predict their clinical outcomes.

14.
Eur Arch Otorhinolaryngol ; 281(4): 2087-2093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37980605

RESUMEN

PURPOSE: This study explores the potential of the Chat-Generative Pre-Trained Transformer (Chat-GPT), a Large Language Model (LLM), in assisting healthcare professionals in the diagnosis of obstructive sleep apnea (OSA). It aims to assess the agreement between Chat-GPT's responses and those of expert otolaryngologists, shedding light on the role of AI-generated content in medical decision-making. METHODS: A prospective, cross-sectional study was conducted, involving 350 otolaryngologists from 25 countries who responded to a specialized OSA survey. Chat-GPT was tasked with providing answers to the same survey questions. Responses were assessed by both super-experts and statistically analyzed for agreement. RESULTS: The study revealed that Chat-GPT and expert responses shared a common answer in over 75% of cases for individual questions. However, the overall consensus was achieved in only four questions. Super-expert assessments showed a moderate agreement level, with Chat-GPT scoring slightly lower than experts. Statistically, Chat-GPT's responses differed significantly from experts' opinions (p = 0.0009). Sub-analysis revealed areas of improvement for Chat-GPT, particularly in questions where super-experts rated its responses lower than expert consensus. CONCLUSIONS: Chat-GPT demonstrates potential as a valuable resource for OSA diagnosis, especially where access to specialists is limited. The study emphasizes the importance of AI-human collaboration, with Chat-GPT serving as a complementary tool rather than a replacement for medical professionals. This research contributes to the discourse in otolaryngology and encourages further exploration of AI-driven healthcare applications. While Chat-GPT exhibits a commendable level of consensus with expert responses, ongoing refinements in AI-based healthcare tools hold significant promise for the future of medicine, addressing the underdiagnosis and undertreatment of OSA and improving patient outcomes.


Asunto(s)
Toma de Decisiones Clínicas , Apnea Obstructiva del Sueño , Humanos , Estudios Transversales , Estudios Prospectivos , Alanina Transaminasa , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/terapia
15.
J Clin Med ; 12(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37959237

RESUMEN

(1) Background: This narrative review aims to explore the predictors of success for pharyngeal surgery in the treatment of obstructive sleep apnea (OSA). An extensive literature search was conducted, identifying relevant studies published up to June 2023, utilizing various databases and key search terms related to OSA, surgical interventions, and predictors of success. The review encompasses both retrospective and prospective studies, case series, and cohort studies to provide a broad understanding of the topic; (2) Methods: Review of English scientific literature on phenotypes of OSA related to predictors of success of pharyngeal surgery; (3) Results: Of 75 articles, 21 were included, in these the following were determined to be factors for surgical success: body mass index (BMI) (8 articles), apnea/hypopnea index (AHI) (8 articles), cephalometry (8 articles), palatine tonsil size (7 articles), Modified Mallampati score (2 articles), genioglossus electromyography (2 articles), Friedman score or upper airway anatomy (3 articles), nasopharyngolaryngoscopy (2 articles), drug-induced sleep endoscopy (DISE) (1 article), oral cavity anatomy (1 article) and oxygen desaturation index (ODI) (1 article); (4) Conclusions: The lack of standardized protocols for the indication of pharyngeal surgery is a reality, however identifying known predictors of surgical success may facilitate homogenizing indications.

16.
Antibiotics (Basel) ; 12(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37107044

RESUMEN

Swine pathogenic infection caused by Escherichia coli, known as swine colibacillosis, represents an epidemiological challenge not only for animal husbandry but also for health authorities. To note, virulent E. coli strains might be transmitted, and also cause disease, in humans. In the last decades, diverse successful multidrug-resistant strains have been detected, mainly due to the growing selective pressure of antibiotic use, in which animal practices have played a relevant role. In fact, according to the different features and particular virulence factor combination, there are four different pathotypes of E. coli that can cause illness in swine: enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC) that comprises edema disease E. coli (EDEC) and enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and extraintestinal pathogenic E. coli (ExPEC). Nevertheless, the most relevant pathotype in a colibacillosis scenario is ETEC, responsible for neonatal and postweaning diarrhea (PWD), in which some ETEC strains present enhanced fitness and pathogenicity. To explore the distribution of pathogenic ETEC in swine farms and their diversity, resistance, and virulence profiles, this review summarizes the most relevant works on these subjects over the past 10 years and discusses the importance of these bacteria as zoonotic agents.

17.
Vet Res ; 54(1): 26, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949480

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) colonizes the intestine of young pigs causing severe diarrhoea and consequently bringing high production costs. The rise of antibiotic selective pressure together with ongoing limitations on their use, demands new strategies to tackle this pathology. The pertinence of using bacteriophages as an alternative is being explored, and in this work, the efficacy of phage vB_EcoM_FJ1 (FJ1) in reducing the load of ETEC EC43-Ph (serotype O9:H9 expressing the enterotoxin STa and two adhesins F5 and F41) was assessed. Foreseeing the oral application on piglets, FJ1 was encapsulated on calcium carbonate and alginate microparticles, thus preventing phage release under adverse conditions of the simulated gastric fluid (pH 3.0) and allowing phage availability in simulated intestinal fluid (pH 6.5). A single dose of encapsulated FJ1, provided to IPEC-1 cultured cells (from intestinal epithelium of piglets) previously infected by EC43, provided bacterial reductions of about 99.9% after 6 h. Although bacteriophage-insensitive mutants (BIMs) have emerged from treatment, the consequent fitness costs associated with this new phenotype were demonstrated, comparatively to the originating strain. The higher competence of the pig complement system to decrease BIMs' viability, the lower level of colonization of IPEC-1 cells observed with these mutants, and the increased survival rates and health index recorded in infected Galleria mellonella larvae supported this observation. Most of all, FJ1 established a proof-of-concept of the efficiency of phages to fight against ETEC in piglet intestinal cells.


Asunto(s)
Bacteriófagos , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Diarrea/microbiología , Diarrea/veterinaria , Línea Celular , Enfermedades de los Porcinos/microbiología
18.
Colloids Surf B Biointerfaces ; 225: 113245, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905835

RESUMEN

The understanding of the interaction between nanoparticles (NPs) and cells is crucial to design nanocarriers with high therapeutic relevance. In this study, we exploited a microfluidics device to synthesize homogeneous suspensions of NPs with ≈ 30, 50, and 70 nm of size. Afterward, we investigated their level and mechanism of internalization when exposed to different types of cells (endothelial cells, macrophages, and fibroblasts). Our results show that all NPs were cytocompatible and internalized by the different cell types. However, NPs uptake was size-dependent, being the maximum uptake efficiency observed for the 30 nm NPs. Moreover, we demonstrate that size can lead to distinct interactions with different cells. For instance, 30 nm NPs were internalized with an increasing trend over time by endothelial cells, while a steady and a decreasing trend were observed when incubated with LPS-stimulated macrophages and fibroblasts, respectively. Finally, the use of different chemical inhibitors (chlorpromazine, cytochalasin-D, and nystatin), and low temperature (4 °C) indicated that phagocytosis/micropinocytosis are the main internalization mechanism for all NPs sizes. However, different endocytic pathways were initiated in the presence of particular NP sizes. In endothelial cells, for example, caveolin-mediated endocytosis occurs primarily in the presence of 50 nm NPs, whereas clathrin-mediated endocytosis substantially promotes the internalization of 70 nm NPs. This evidence demonstrates the importance of size in the NPs design for mediating interaction with specific cell types.


Asunto(s)
Células Endoteliales , Nanopartículas , Nanopartículas/metabolismo , Polímeros , Línea Celular , Células Cultivadas , Endocitosis , Tamaño de la Partícula
19.
Cancer Cell ; 40(12): 1467-1469, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513048

RESUMEN

Desmoplastic extracellular matrix (ECM) exerts a seemingly paradoxical role in cancer, restricting or promoting progression. Two recent back-to-back Nature reports shed light on this conundrum, revealing the role of different hepatic stellate cell (HSC) populations and different collagen I cleavage states in directing the progression of cancer.


Asunto(s)
Células Estrelladas Hepáticas , Neoplasias , Humanos , Matriz Extracelular , Macrófagos del Hígado , Colágeno Tipo I , Neoplasias/genética , Cirrosis Hepática
20.
Front Vet Sci ; 9: 981207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387374

RESUMEN

Enteric colibacillosis is a common disease in nursing and weanling pigs. It is caused by the colonization of the small intestine by enterotoxigenic strains of Escherichia coli (ETEC) that make use of specific fimbria or pili to adhere to the absorptive epithelial cells of the jejunum and ileum. Once attached, and when both the immunological systems and the gut microbiota are poorly developed, ETEC produce one or more enterotoxins that can have local and, further on, systemic effects. These enterotoxins cause fluid and electrolytes to be secreted into the intestinal lumen of animals, which results in diarrhea, dehydration, and acidosis. From the diversity of control strategies, antibiotics and zinc oxide are the ones that have contributed more significantly to mitigating post-weaning diarrhea (PWD) economic losses. However, concerns about antibiotic resistance determined the restriction on the use of critically important antimicrobials in food-producing animals and the prohibition of their use as growth promoters. As such, it is important now to begin the transition from these preventive/control measures to other, more sustainable, approaches. This review provides a quick synopsis of the currently approved and available therapies for PWD treatment while presenting an overview of novel antimicrobial strategies that are being explored for the control and treatment of this infection, including, prebiotics, probiotics, synbiotics, organic acids, bacteriophages, spray-dried plasma, antibodies, phytogenic substances, antisense oligonucleotides, and aptamers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...