RESUMEN
Cervical cancer (CC) is a serious global health issue, and it is well-known that HPV infection is the main etiological factor that triggers carcinogenesis. In cancer, chemokine ligands and receptors are involved in tumor cell growth, metastasis, leukocyte infiltration, and angiogenesis; however, information on the role played by E6/E7 of HPV16/18 in the modulation of chemokines is very limited. Therefore, this study aimed to determine whether chemokines are differentially expressed in CC-derived cell lines; if E6/E7 oncoproteins from HPV16 and 18 are capable of mediating chemokine expression, what is the expression profile of chemokines in tissues derived from CC and what is their impact on the overall survival of patients with this pathology? For this purpose, RNA sequencing and real-time PCR were performed on SiHa, HeLa, and C33A tumorigenic cell lines, on the non-tumorigenic HaCaT cells, and the E6/E7 HPV-transduced HaCaT cell models. Furthermore, chemokine expression and survival analysis were executed on 304 CC and 22 normal tissue samples from The Cancer Genome Atlas (TCGA) repository. The results demonstrate that CXCL1, CXCL2, CXCL3, and CXCL8 are regulated by E6/E7 of HPV16 and 18, are overexpressed in CC biopsies, and that their higher expression is related to a worse prognostic survival.
RESUMEN
Beta-2 Human papillomaviruses 38b, 107, and 122 have been frequently found in cervical cancer samples in western Mexico. Because their E6/E7 genes functions are not fully elucidated, we deepen into their transformation capabilities. To achieve this goal, primary human fibroblasts (FB) were transduced with E6/E7 genotype-specific viral particles. Additionally, E6/E7 from HPVs 16 and 18 were included as controls. All E6/E7-cell models increased their lifespan; however, it is important to highlight that FB-E6/E7-122 showed growth as accelerated as FB-E6/E7-16 and 18. Furthermore, both FB-E6/E7-38b and 122 exhibited abilities to migrate, and FB-E6/E7-122 presented high invasive capacity. On the other hand, ΔNp73 expression was found in all cell models, except for FB-pLVX (empty-vector). Finally, RNAseq found differentially expressed genes enriched in signaling pathways related to cell cycle, epithelial-mesenchymal transition, and cancer, among others. This study shows for the first time, the great transformative potential that genotypes of the Beta-2 also possess, especially HPV122. These Beta-2 HPVs can modulate some of the genes that are well known to be regulated by Alpha-HPVs, however, they also possess alternative strategies to modulate diverse signaling pathways. These data support the idea that Beta-2 HPVs should play an important role in co-infections with Alpha-HPV during carcinogenesis.