Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Intervalo de año de publicación
1.
Biol Res ; 56(1): 27, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37226204

RESUMEN

BACKGROUND: The underlying mechanism of Parkinson's disease are still unidentified, but excitotoxicity, oxidative stress, and neuroinflammation are considered key actors. Proliferator activated receptors (PPARs) are transcription factors involved in the control of numerous pathways. Specifically, PPARß/δ is recognized as an oxidative stress sensor, and we have previously reported that it plays a detrimental role in neurodegeneration. METHODS: Basing on this concept, in this work, we tested the potential effects of a specific PPARß/δ antagonist (GSK0660) in an in vitro model of Parkinson's disease. Specifically, live-cell imaging, gene expression, Western blot, proteasome analyses, mitochondrial and bioenergetic studies were performed. Since we obtained promising results, we tested this antagonist in a 6-hydroxydopamine hemilesioned mouse model. In the animal model, behavioral tests, histological analysis, immunofluorescence and western blot of substantia nigra and striatum upon GSK0660 were assayed. RESULTS: Our findings suggested that PPARß/δ antagonist has neuroprotective potential due to neurotrophic support, anti-apoptotic and anti-oxidative effects paralleled to an amelioration of mitochondria and proteasome activity. These findings are strongly supported also by the siRNA results demonstrating that by silencing PPARß/δ a significative rescue of the dopaminergic neurons was obtained, thus indicating an involvement of PPARß/δ in PD's pathogenesis. Interestingly, in the animal model, GSK0660 treatment confirmed neuroprotective effects observed in the in vitro studies. Neuroprotective effects were highlighted by the behavioural performance and apomorphine rotation tests amelioration and the reduction of dopaminergic neuronal loss. These data were also confirmed by imaging and western blotting, indeed, the tested compound decreased astrogliosis and activated microglia, concomitant with an upregulation of neuroprotective pathways. CONCLUSIONS: In summary, PPARß/δ antagonist displayed neuroprotective activities against 6-hydroxydopamine detrimental effects both in vitro and in vivo models of Parkinson's disease, suggesting that it may represent a novel therapeutic approach for this disorder.


Asunto(s)
Fármacos Neuroprotectores , PPAR-beta , Enfermedad de Parkinson , Animales , Ratones , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Oxidopamina , Complejo de la Endopetidasa Proteasomal
2.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899865

RESUMEN

The intestinal barrier is the main contributor to gut homeostasis. Perturbations of the intestinal epithelium or supporting factors can lead to the development of intestinal hyperpermeability, termed "leaky gut". A leaky gut is characterized by loss of epithelial integrity and reduced function of the gut barrier, and is associated with prolonged use of Non-Steroidal Anti-Inflammatories. The harmful effect of NSAIDs on intestinal and gastric epithelial integrity is considered an adverse effect that is common to all drugs belonging to this class, and it is strictly dependent on NSAID properties to inhibit cyclo-oxygenase enzymes. However, different factors may affect the specific tolerability profile of different members of the same class. The present study aims to compare the effects of distinct classes of NSAIDs, such as ketoprofen (K), Ibuprofen (IBU), and their corresponding lysine (Lys) and, only for ibuprofen, arginine (Arg) salts, using an in vitro model of leaky gut. The results obtained showed inflammatory-induced oxidative stress responses, and related overloads of the ubiquitin-proteasome system (UPS) accompanied by protein oxidation and morphological changes to the intestinal barrier, many of these effects being counteracted by ketoprofen and ketoprofen lysin salt. In addition, this study reports for the first time a specific effect of R-Ketoprofen on the NFkB pathway that sheds new light on previously reported COX-independent effects, and that may account for the observed unexpected protective effect of K on stress-induced damage on the IEB.


Asunto(s)
Cetoprofeno , Humanos , Ibuprofeno/farmacología , Antiinflamatorios no Esteroideos/farmacología , Estrés Oxidativo
3.
Biol. Res ; 56: 27-27, 2023. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1513739

RESUMEN

BACKGROUND: The underlying mechanism of Parkinson's disease are still unidentified, but excitotoxicity, oxidative stress, and neuroinflammation are considered key actors. Proliferator activated receptors (PPARs) are transcription factors involved in the control of numerous pathways. Specifically, PPARß/δ is recognized as an oxidative stress sensor, and we have previously reported that it plays a detrimental role in neurodegeneration. METHODS: Basing on this concept, in this work, we tested the potential effects of a specific PPARß/δ antagonist (GSK0660) in an in vitro model of Parkinson's disease. Specifically, live-cell imaging, gene expression, Western blot, proteasome analyses, mitochondrial and bioenergetic studies were performed. Since we obtained promising results, we tested this antagonist in a 6-hydroxydopamine hemilesioned mouse model. In the animal model, behavioral tests, histological analysis, immunofluorescence and western blot of substantia nigra and striatum upon GSK0660 were assayed. RESULTS: Our findings suggested that PPARß/δ antagonist has neuroprotective potential due to neurotrophic support, anti-apoptotic and anti-oxidative effects paralleled to an amelioration of mitochondria and proteasome activity. These findings are strongly supported also by the siRNA results demonstrating that by silencing PPARß/δ a significative rescue of the dopaminergic neurons was obtained, thus indicating an involvement of PPARß/δ in PD's pathogenesis. Interestingly, in the animal model, GSK0660 treatment confirmed neuroprotective effects observed in the in vitro studies. Neuroprotective effects were highlighted by the behavioural performance and apomorphine rotation tests amelioration and the reduction of dopaminergic neuronal loss. These data were also confirmed by imaging and western blotting, indeed, the tested compound decreased astrogliosis and activated microglia, concomitant with an upregulation of neuroprotective pathways. CONCLUSIONS: In summary, PPARß/δ antagonist displayed neuroprotective activities against 6-hydroxydopamine detrimental effects both in vitro and in vivo models of Parkinson's disease, suggesting that it may represent a novel therapeutic approach for this disorder.


Asunto(s)
Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , PPAR-beta , Oxidopamina , Complejo de la Endopetidasa Proteasomal
4.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884851

RESUMEN

Thanks to their reduced size, great surface area, and capacity to interact with cells and tissues, nanomaterials present some attractive biological and chemical characteristics with potential uses in the field of biomedical applications. In this context, graphene and its chemical derivatives have been extensively used in many biomedical research areas from drug delivery to bioelectronics and tissue engineering. Graphene-based nanomaterials show excellent optical, mechanical, and biological properties. They can be used as a substrate in the field of tissue engineering due to their conductivity, allowing to study, and educate neural connections, and guide neural growth and differentiation; thus, graphene-based nanomaterials represent an emerging aspect in regenerative medicine. Moreover, there is now an urgent need to develop multifunctional and functionalized nanomaterials able to arrive at neuronal cells through the blood-brain barrier, to manage a specific drug delivery system. In this review, we will focus on the recent applications of graphene-based nanomaterials in vitro and in vivo, also combining graphene with other smart materials to achieve the best benefits in the fields of nervous tissue engineering and neural regenerative medicine. We will then highlight the potential use of these graphene-based materials to construct graphene 3D scaffolds able to stimulate neural growth and regeneration in vivo for clinical applications.


Asunto(s)
Sistema Nervioso Central/fisiología , Grafito/química , Nanoestructuras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Regeneración Nerviosa/efectos de los fármacos , Medicina Regenerativa , Ingeniería de Tejidos
5.
Biomedicines ; 9(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680584

RESUMEN

The mucolytic agent S-carboxymethylcysteine is widely used as an expectorant for the treatment of numerous respiratory disorders. The metabolic fate of S-carboxymethyl-L-cysteine is complex. Several clinical studies have demonstrated that the metabolism of this agent differs within the same individual, with sulfur oxygenated metabolites generated upon night-time administration. It has been indicated that this drug behaves like a free radical scavenger and that, in this regard, the sulfide is the active species with sulphoxide metabolites (already oxidized) being inactive. Consequently, a night-time consumption of the drug should be more effective upon daytime administration. Still, this diurnal variation in biotransformation (deactivation) is dependent on the genetic polymorphism on which relies the patient population capacities of S-carboxymethyl-L-cysteine sulphoxidation. It has been reported that those cohorts who are efficient sulfur oxidizers will generate inactive oxygenated metabolites. In contrast, those who have a relative deficiency in this mechanism will be subjected to the active sulfide for a more extended period. In this regard, it is noteworthy that 38-39% of Parkinson's disease patients belong to the poor sulphoxide cohort, being exposed to higher levels of active sulfide, the active antioxidant metabolite of S-carboxymethyl-L-cysteine. Parkinson's disease is a neurodegenerative disorder that affects predominately dopaminergic neurons. It has been demonstrated that oxidative stress and mitochondrial dysfunction play a crucial role in the degeneration of dopaminergic neurons. Based on this evidence, in this study, we evaluated the effects of S-carboxymethyl cysteine in an in vitro model of Parkinson's disease in protecting against oxidative stress injury. The data obtained suggested that an S-carboxymethylcysteine-enriched diet could be beneficial during aging to protect neurons from oxidative imbalance and mitochondrial dysfunction, thus preventing the progression of neurodegenerative processes.

6.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34573099

RESUMEN

Methionine is an aliphatic, sulfur-containing, essential amino acid that has been demonstrated to have crucial roles in metabolism, innate immunity, and activation of endogenous antioxidant enzymes, including methionine sulfoxide reductase A/B and the biosynthesis of glutathione to counteract oxidative stress. Still, methionine restriction avoids altered methionine/transmethylation metabolism, thus reducing DNA damage and possibly avoiding neurodegenerative processes. In this study, we wanted to study the preventive effects of methionine in counteracting 6-hydroxydopamine (6-OHDA)-induced injury. In particular, we analyzed the protective effects of the amino acid L-methionine in an in vitro model of Parkinson's disease and dissected the underlying mechanisms compared to the known antioxidant taurine to gain insights into the potential of methionine treatment in slowing the progression of the disease by maintaining mitochondrial functionality. In addition, to ascribe the effects of methionine on mitochondria and oxidative stress, methionine sulfoxide was used in place of methionine. The data obtained suggested that an L-methionine-enriched diet could be beneficial during aging to protect neurons from oxidative imbalance and mitochondrial dysfunction, thus preventing the progression of neurodegenerative processes.

7.
Front Bioeng Biotechnol ; 9: 639765, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816451

RESUMEN

Exploring and developing multifunctional intelligent biomaterials is crucial to improve next-generation therapies in tissue engineering and regenerative medicine. Recent findings show how distinct characteristics of in situ microenvironment can be mimicked by using different biomaterials. In vivo tissue architecture is characterized by the interconnection between cells and specific components of the extracellular matrix (ECM). Last evidence shows the importance of the structure and composition of the ECM in the development of cellular and molecular techniques, to achieve the best biodegradable and bioactive biomaterial compatible to human physiology. Such biomaterials provide specialized bioactive signals to regulate the surrounding biological habitat, through the progression of wound healing and biomaterial integration. The connection between stem cells and biomaterials stimulate the occurrence of specific modifications in terms of cell properties and fate, influencing then processes such as self-renewal, cell adhesion and differentiation. Recent studies in the field of tissue engineering and regenerative medicine have shown to deal with a broad area of applications, offering the most efficient and suitable strategies to neural repair and regeneration, drawing attention towards the potential use of biomaterials as 3D tools for in vitro neurodevelopment of tissue models, both in physiological and pathological conditions. In this direction, there are several tools supporting cell regeneration, which associate cytokines and other soluble factors delivery through the scaffold, and different approaches considering the features of the biomaterials, for an increased functionalization of the scaffold and for a better promotion of neural proliferation and cells-ECM interplay. In fact, 3D scaffolds need to ensure a progressive and regular delivery of cytokines, growth factors, or biomolecules, and moreover they should serve as a guide and support for injured tissues. It is also possible to create scaffolds with different layers, each one possessing different physical and biochemical aspects, able to provide at the same time organization, support and maintenance of the specific cell phenotype and diversified ECM morphogenesis. Our review summarizes the most recent advancements in functional materials, which are crucial to achieve the best performance and at the same time, to overcome the current limitations in tissue engineering and nervous tissue regeneration.

8.
Biomedicines ; 9(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525605

RESUMEN

Breast cancer is the most frequent cancer and the second leading cause of death among women. Triple-negative breast cancer is the most aggressive subtype of breast cancer and is characterized by the absence of hormone receptors and human epithelial growth factor receptor 2. Cancer stem cells (CSCs) represent a small population of tumor cells showing a crucial role in tumor progression, metastasis, recurrence, and drug resistance. The presence of CSCs can explain the failure of conventional therapies to completely eradicate cancer. Thus, to overcome this limit, targeting CSCs may constitute a promising approach for breast cancer treatment, especially in the triple-negative form. To this purpose, we isolated and characterized breast cancer stem cells from a triple-negative breast cancer cell line, MDA-MB-231. The obtained mammospheres were then treated with the specific PPARα antagonist GW6471, after which, glucose, lipid metabolism, and invasiveness were analyzed. Notably, GW6471 reduced cancer stem cell viability, proliferation, and spheroid formation, leading to apoptosis and metabolic impairment. Overall, our findings suggest that GW6471 may be used as a potent adjuvant for gold standard therapies for triple-negative breast cancer, opening the possibility for preclinical and clinical trials for this class of compounds.

9.
Mar Drugs ; 19(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430021

RESUMEN

Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs' neuroprotective potential for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. We will describe these marine compounds' potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.


Asunto(s)
Organismos Acuáticos/química , Biología Marina , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico
10.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825273

RESUMEN

Neurodegenerative diseases are debilitating and currently incurable conditions causing severe cognitive and motor impairments, defined by the progressive deterioration of neuronal structure and function, eventually causing neuronal loss. Understand the molecular and cellular mechanisms underlying these disorders are essential to develop therapeutic approaches. MicroRNAs (miRNAs) are short non-coding RNAs implicated in gene expression regulation at the post-transcriptional level. Moreover, miRNAs are crucial for different processes, including cell growth, signal transmission, apoptosis, cancer and aging-related neurodegenerative diseases. Altered miRNAs levels have been associated with the formation of reactive oxygen species (ROS) and mitochondrial dysfunction. Mitochondrial dysfunction and ROS formation occur in many neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. The crosstalk existing among oxidative stress, mitochondrial dysfunction and miRNAs dysregulation plays a pivotal role in the onset and progression of neurodegenerative diseases. Based on this evidence, in this review, with a focus on miRNAs and their role in mitochondrial dysfunction in aging-related neurodegenerative diseases, with a focus on their potential as diagnostic biomarkers and therapeutic targets.


Asunto(s)
Envejecimiento/genética , MicroARNs/genética , Mitocondrias/genética , Enfermedades Neurodegenerativas/genética , Apoptosis/genética , Apoptosis/fisiología , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Especies Reactivas de Oxígeno/metabolismo
11.
J Cell Biochem ; 121(12): 4862-4869, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32449987

RESUMEN

Oxidative stress is considered the common effector of the cascade of degenerative events in many neurological conditions. Thus, in this paper we tested different nutraceuticals in H2 O2 in vitro model to understand if could represent an adjuvant treatment for neurological diseases. In this study, nutraceuticals bacopa, lycopene, astaxanthin, and vitamin B12 were used alone or in combination in human neuronal differentiated SH-SY5Y cells upon hydrogen peroxide-induced injury and neuroprotective, neuronal death pathways were analyzed. The nutraceuticals analyzed were able to protect H2 O2 cytotoxic effects, through increasing cell viability and proteins involved in neuroprotection pathways and restoring proteins involved in cell death pathways. On this basis, it is possible to propose the use of these compounds as dietary supplement for the prevention or as adjuvant to the only symptomatic treatments so far available for neurodegenerative diseases.

12.
Cell Biol Int ; 44(8): 1734-1744, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32343461

RESUMEN

Alzheimer's disease represents the most prevalent neurodegeneration worldwide, clinically characterized by cognitive and memory impairment. New therapeutic approaches are extremely important to counteract this disorder. This research is focused on the potential use of choline alfoscerate in preventing neuronal death using in vitro models of Alzheimer's disease, representing the early stage of the disease, treated before or after the insult with glycerylphosphorylcholine. On the light of the results collected, we can postulate that choline alfoscerate, by the activation of the neurotrophin survival pathway, was able to counteract the detrimental effect of ß-amyloid in both in vitro models, reducing apoptotic cell death and preserving the neuronal morphology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Glicerilfosforilcolina/farmacología , Fármacos Neuroprotectores/farmacología , Péptidos beta-Amiloides/toxicidad , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neuronas/citología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Receptor trkB/metabolismo , Transducción de Señal
13.
Aging (Albany NY) ; 12(5): 4641-4659, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32155131

RESUMEN

Parkinson is a common neurodegenerative disorder, characterized by motor and non-motor symptoms, including abnormalities in the gut function, which may appear before the motor sign. To date, there are treatments that can help relieve Parkinson' disease (PD)-associated symptoms, but there is no cure to control the onset and progression of this disorder. Altered components of the gut could represent a key role in gut-brain axis, which is a bidirectional system between the central nervous system and the enteric nervous system. Diet can alter the microbiota composition, affecting gut-brain axis function. Gut microbiome restoration through selected probiotics' administration has been reported. In this study, we investigated the effects of the novel formulation SLAB51 in PD. Our findings indicate that this probiotic formulation can counteract the detrimental effect of 6-OHDA in vitro and in vivo models of PD. The results suggest that SLAB51 can be a promising candidate for the prevention or as coadjuvant treatment of PD.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Destreza Motora/efectos de los fármacos , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Probióticos/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Probióticos/administración & dosificación
14.
Artículo en Inglés | MEDLINE | ID: mdl-31799246

RESUMEN

Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.

15.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683535

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert important functions in mediating the pleiotropic effects of diverse exogenous factors such as physical exercise and food components. Particularly, PPARs act as transcription factors that control the expression of genes implicated in lipid and glucose metabolism, and cellular proliferation and differentiation. In this review, we aim to summarize the recent advancements reported on the effects of lifestyle and food habits on PPAR transcriptional activity in chronic disease.


Asunto(s)
Conducta Alimentaria , Inflamación/metabolismo , Estilo de Vida , Síndrome Metabólico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Enfermedad Crónica , Metabolismo Energético , Humanos , Isoformas de Proteínas/metabolismo
16.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614739

RESUMEN

Recent findings have led to the discovery of many signaling pathways that link nuclear receptors with human conditions, including mental decline and neurodegenerative diseases. PPARγ agonists have been indicated as neuroprotective agents, supporting synaptic plasticity and neurite outgrowth. For these reasons, many PPARγ ligands have been proposed for the improvement of cognitive performance in different pathological conditions. In this review, the research on this issue is extensively discussed.


Asunto(s)
Trastorno Autístico/metabolismo , Trastornos del Conocimiento/metabolismo , Cognición , PPAR gamma/metabolismo , Enfermedad de Parkinson/metabolismo , Esquizofrenia/metabolismo , Animales , Trastorno Autístico/genética , Trastornos del Conocimiento/genética , Humanos , PPAR gamma/genética , Enfermedad de Parkinson/genética , Esquizofrenia/genética
17.
Cells ; 8(9)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491966

RESUMEN

The mechanotransduction is the process by which cells sense mechanical stimuli such as elasticity, viscosity, and nanotopography of extracellular matrix and translate them into biochemical signals. The mechanotransduction regulates several aspects of the cell behavior, including migration, proliferation, and differentiation in a time-dependent manner. Several reports have indicated that cell behavior and fate are not transmitted by a single signal, but rather by an intricate network of many signals operating on different length and timescales that determine cell fate. Since cell biology and biomaterial technology are fundamentals in cell-based regenerative therapies, comprehending the interaction between cells and biomaterials may allow the design of new biomaterials for clinical therapeutic applications in tissue regeneration. In this work, we present the most relevant mechanism by which the biomechanical properties of extracellular matrix (ECM) influence cell reprogramming, with particular attention on the new technologies and materials engineering, in which are taken into account not only the biochemical and biophysical signals patterns but also the factor time.


Asunto(s)
Reprogramación Celular , Regeneración , Células Madre/citología , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Mecanotransducción Celular , Células Madre/efectos de los fármacos , Células Madre/fisiología
18.
Sci Rep ; 9(1): 11729, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409858

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect of several anti-neoplastics and a main cause of sensory disturbances in cancer survivors, negatively impacting patients' quality of life. Peripheral nerve degeneration or small fibre neuropathy is generally accepted as the underlying mechanism in the development of CIPN. Recent evidence has contributed to clarify the determinant role of cytokines and chemokines in the process leading to neuronal hyperexcitability. Exposure to oxaliplatin triggers alterations in peripheral neuropathic pathways previously linked to IL-8 pathway. We investigated a novel selective inhibitor of IL-8 receptors, DF2726A, and showed its effects in counteracting CINP pathways, extending the relevance of the activation of IL-8 pathway to the class of platinum chemotherapeutics. Based on our results, we suggest that DF2726A might be a promising candidate for clinical treatment of CIPN conditions due to its efficacy and optimized pharmacokinetic/pharmacodynamic profile.


Asunto(s)
Antineoplásicos/efectos adversos , Interleucina-8/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Citocinas/metabolismo , Humanos , Terapia Molecular Dirigida , Neuralgia/prevención & control , Oxaliplatino/efectos adversos , Oxaliplatino/uso terapéutico
19.
Front Mol Neurosci ; 12: 132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191244

RESUMEN

Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells' rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...