Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980800

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematological cancer characterized by poor prognosis and frequent relapses. Aside from specific mutation-related changes, in AML, the overall function of lysosomes and mitochondria is drastically altered to fulfill the elevated biomass and bioenergetic demands. On the basis of previous results, in silico drug discovery screening was used to identify a new family of lysosome-/mitochondria-targeting compounds. These novel tetracyclic hits, with a cationic amphiphilic structure, specifically eradicate leukemic cells by inducing both mitochondrial damage and apoptosis, and simultaneous lysosomal membrane leakiness. Lysosomal leakiness does not only elicit canonical lysosome-dependent cell death, but also activates the terminal differentiation of AML cells through the Ca2+-TFEB-MYC signaling axis. In addition to being an effective monotherapy, its combination with the chemotherapeutic arsenic trioxide (ATO) used in other types of leukemia is highly synergistic in AML cells, widening the therapeutic window of the treatment. Moreover, the compounds are effective in a wide panel of cancer cell lines and possess adequate pharmacological properties rendering them promising drug candidates for the treatment of AML and other neoplasias.

2.
iScience ; 25(10): 105128, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185381

RESUMEN

Adrenoceptors are G protein-coupled receptors involved in a large variety of physiological processes, also under pathological conditions. This is due in large part to their ubiquitous expression in the body exerting numerous essential functions. Therefore, the possibility to control their activity with high spatial and temporal precision would constitute a valuable research tool. In this study, we present a caged version of the approved non-selective ß-adrenoceptor antagonist carvedilol, synthesized by alkylation of its secondary amine with a coumarin derivative. Introducing this photo-removable group abolished carvedilol physiological effects in cell cultures, mouse isolated perfused hearts and living zebrafish larvae. Only after visible light application, carvedilol was released and the different physiological systems were pharmacologically modulated in a similar manner as the control drug. This research provides a new photopharmacological tool for a wide range of research applications that may help in the development of future precise therapies.

3.
Angew Chem Int Ed Engl ; 61(30): e202203449, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35608051

RESUMEN

Catecholamine-triggered ß-adrenoceptor (ß-AR) signaling is essential for the correct functioning of the heart. Although both ß1 - and ß2 -AR subtypes are expressed in cardiomyocytes, drugs selectively targeting ß1 -AR have proven this receptor as the main target for the therapeutic effects of beta blockers in the heart. Here, we report a new strategy for the light-control of ß1 -AR activation by means of photoswitchable drugs with a high level of ß1 -/ß2 -AR selectivity. All reported molecules allow for an efficient real-time optical control of receptor function in vitro. Moreover, using confocal microscopy we demonstrate that the binding of our best hit, pAzo-2, can be reversibly photocontrolled. Strikingly, pAzo-2 also enables a dynamic cardiac rhythm management on living zebrafish larvae using light, thus highlighting the therapeutic and research potential of the developed photoswitches. Overall, this work provides the first proof of precise control of the therapeutic target ß1 -AR in native environments using light.


Asunto(s)
Receptores Adrenérgicos beta 2 , Pez Cebra , Antagonistas Adrenérgicos beta/farmacología , Animales , Ligandos , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Pez Cebra/metabolismo
4.
Cell Rep ; 36(9): 109648, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469715

RESUMEN

Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Agonistas de Aminoácidos Excitadores/metabolismo , Antagonistas de Aminoácidos Excitadores/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Subunidades de Proteína , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/ultraestructura , Relación Estructura-Actividad
5.
ACS Pharmacol Transl Sci ; 3(5): 883-895, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33073188

RESUMEN

G protein-coupled receptors (GPCR), including the metabotrobic glutamate 5 receptor (mGlu5), are important therapeutic targets and the development of allosteric ligands for targeting GPCRs has become a desirable approach toward modulating receptor activity. Traditional pharmacological approaches toward modulating GPCR activity are still limited since precise spatiotemporal control of a ligand is lost as soon as it is administered. Photopharmacology proposes the use of photoswitchable ligands to overcome this limitation, since their activity can be reversibly controlled by light with high precision. As this is still a growing field, our understanding of the molecular mechanisms underlying the light-induced changes of different photoswitchable ligand pharmacology is suboptimal. For this reason, we have studied the mechanisms of action of alloswitch-1 and MCS0331; two freely diffusible, mGlu5 phenylazopyridine photoswitchable negative allosteric modulators. We combined photochemical, cell-based, and in vivo photopharmacological approaches to investigate the effects of trans-cis azobenzene photoisomerization on the functional activity and binding ability of these ligands to the mGlu5 allosteric pocket. From these results, we conclude that photoisomerization can take place inside and outside the ligand binding pocket, and this leads to a reversible loss in affinity, in part, due to changes in dissociation rates from the receptor. Ligand activity for both photoswitchable ligands deviates from high-affinity mGlu5 negative allosteric modulation (in the trans configuration) to reduced affinity for the mGlu5 in their cis configuration. Importantly, this mechanism translates to dynamic and reversible control over pain following local injection and illumination of negative allosteric modulators into a brain region implicated in pain control.

6.
J Med Chem ; 63(15): 8458-8470, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32686936

RESUMEN

ß2-Adrenoceptors (ß2-AR) are prototypical G-protein-coupled receptors and important pharmacological targets with relevant roles in physiological processes and diseases. Herein, we introduce Photoazolol-1-3, a series of photoswitchable azobenzene ß2-AR antagonists that can be reversibly controlled with light. These new photochromic ligands are designed following the azologization strategy, with a p-acetamido azobenzene substituting the hydrophobic moiety present in many ß2-AR antagonists. Using a fluorescence resonance energy transfer (FRET) biosensor-based assay, a variety of photopharmacological properties are identified. Two of the light-regulated molecules show potent ß2-AR antagonism and enable a reversible and dynamic control of cellular receptor activity with light. Their photopharmacological properties are opposite, with Photoazolol-1 being more active in the dark and Photoazolol-2 demonstrating higher antagonism upon illumination. In addition, we provide a molecular rationale for the interaction of the different photoisomers with the receptor. Overall, we present innovative tools and a proof of concept for the precise control of ß2-AR by means of light.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Compuestos Azo/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/química , Compuestos Azo/química , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Ligandos , Luz , Modelos Moleculares
7.
Anal Bioanal Chem ; 412(22): 5525-5535, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32564119

RESUMEN

Mass spectrometry (MS) binding assays are a label-free alternative to radioligand or fluorescence binding assays, so the readout is based on direct mass spectrometric detection of the test ligand. The study presented here describes the development and validation of a highly sensitive, rapid, and robust MS binding assay for the quantification of the binding of the metabotropic glutamate 5 (mGlu5) negative allosteric modulator (NAM), MPEP (2-methyl-6-phenylethynylpyridine) at the mGlu5 allosteric binding site. The LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometric) analytical method was established and validated with a deuterated analogue of MPEP as an internal standard. The developed MS binding assay described here allowed for the determination of MS binding affinity estimates that were in agreement with affinity estimates obtained from a tritiated MPEP radioligand saturation binding assay, indicating the suitability of this methodology for determining affinity estimates for compounds that target mGlu5 allosteric binding sites. Graphical abstract.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Receptor del Glutamato Metabotropico 5/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Sitio Alostérico , Células HEK293 , Humanos , Ligandos , Límite de Detección , Unión Proteica , Ensayo de Unión Radioligante , Reproducibilidad de los Resultados
9.
Elife ; 62017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28395733

RESUMEN

Light-operated drugs constitute a major target in drug discovery, since they may provide spatiotemporal resolution for the treatment of complex diseases (i.e. chronic pain). JF-NP-26 is an inactive photocaged derivative of the metabotropic glutamate type 5 (mGlu5) receptor negative allosteric modulator raseglurant. Violet light illumination of JF-NP-26 induces a photochemical reaction prompting the active-drug's release, which effectively controls mGlu5 receptor activity both in ectopic expressing systems and in striatal primary neurons. Systemic administration in mice followed by local light-emitting diode (LED)-based illumination, either of the thalamus or the peripheral tissues, induced JF-NP-26-mediated light-dependent analgesia both in neuropathic and in acute/tonic inflammatory pain models. These data offer the first example of optical control of analgesia in vivo using a photocaged mGlu5 receptor negative allosteric modulator. This approach shows potential for precisely targeting, in time and space, endogenous receptors, which may allow a better management of difficult-to-treat disorders.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Analgésicos/metabolismo , Luz , Neuronas/efectos de los fármacos , Dolor , Fármacos Fotosensibilizantes/metabolismo , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Analgesia/métodos , Analgésicos/administración & dosificación , Animales , Ratones , Fármacos Fotosensibilizantes/administración & dosificación
10.
J Org Chem ; 61(20): 7106-7115, 1996 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-11667613

RESUMEN

The total synthesis of (+/-)-deethylibophyllidine is described, proceeding in eight steps from 4-(methoxyphenyl)ethylamine in 5% overall yield (Scheme 6). In terms of sequential annulation, the strategy involves the following operations: E --> DE --> ABDE --> ABCDE (Scheme 1). The key steps in the synthesis are the stereoselective formation of octahydroindol-6-ones by acid treatment of dihydroanisole derivatives, the regioselective Fischer indolization to obtain octahydropyrrolo[3,2-c]carbazoles, and the tandem process consisting of Pummerer rearrangement upon a beta-amino sulfoxide and thionium ion cyclization upon a beta-indole position of a 2,3-disubstituted indole to generate the quaternary spiro center. Attempts to effect the construction of the pentacyclic framework by means of Fischer indolization of the octahydropyrrolo[3,2,1-hi]indol-6-one resulted in failure (Scheme 2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...