Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2037, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499536

RESUMEN

Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.


Asunto(s)
Antibacterianos , Cefalosporinas , Humanos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Bacterias , Aprendizaje Automático , Tecnología
2.
Microbes Infect ; 25(7): 105151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207717

RESUMEN

Nanomotion technology is a growth-independent approach that can be used to detect and record the vibrations of bacteria attached to cantilevers. We have developed a nanomotion-based antibiotic susceptibility test (AST) protocol for Mycobacterium tuberculosis (MTB). The protocol was used to predict strain phenotype towards isoniazid (INH) and rifampicin (RIF) using a leave-one-out cross-validation (LOOCV) and machine learning techniques. This MTB-nanomotion protocol takes 21 h, including cell suspension preparation, optimized bacterial attachment to functionalized cantilever, and nanomotion recording before and after antibiotic exposure. We applied this protocol to MTB isolates (n = 40) and were able to discriminate between susceptible and resistant strains for INH and RIF with a maximum sensitivity of 97.4% and 100%, respectively, and a maximum specificity of 100% for both antibiotics when considering each nanomotion recording to be a distinct experiment. Grouping recordings as triplicates based on source isolate improved sensitivity and specificity to 100% for both antibiotics. Nanomotion technology can potentially reduce time-to-result significantly compared to the days and weeks currently needed for current phenotypic ASTs for MTB. It can further be extended to other anti-TB drugs to help guide more effective TB treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Rifampin/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA