Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 469(1): 126-131, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26616053

RESUMEN

Cytoplasmic dynein is a macromolecular motor complex with diverse functions in eukaryotic cells. Dynein plays essential roles in intracellular transport of organelles and mitosis, mediated in part by interactions between the dynein intermediate chain 2 (IC-2) subunits and adapter proteins that bind specific cargos. In experiments to identify phosphorylation-dependent binding partners for IC-2 we instead identified a phosphorylation-independent binding partner, the cytosolic chaperonin containing T complex protein 1 (CCT). CCT consists of eight subunits (CCT1-8) and facilitates folding of a subset of newly synthesized proteins. We confirmed interactions between IC-2 and CCT5 and CCT8 in co-immunoprecipitation experiments and determined that the C-terminal half of IC-2 is necessary and sufficient to bind CCT8. Interestingly, co-immunoiprecipitation of IC-2 and CCT is abolished by prior cycloheximide treatment of cells, suggesting that CCT participates in folding of nascent IC-2. In vitro translation experiments employing recombinant CCT complex demonstrated that CCT is able to bind newly synthesized IC-2 after release from the ribosome consistent with a role in folding of IC-2.


Asunto(s)
Chaperonina con TCP-1/metabolismo , Dineínas Citoplasmáticas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Sitios de Unión , Unión Proteica , Mapeo de Interacción de Proteínas , Ratas
2.
Int J Mol Sci ; 14(2): 3595-620, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23434660

RESUMEN

Extracellular-signal regulated kinase (ERK) signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2) as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.

3.
J Biol Chem ; 288(3): 1458-68, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23184953

RESUMEN

Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N'-nitro-N-nitroso-guanidine-treated mice or H(2)O(2)-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production.


Asunto(s)
Asma/tratamiento farmacológico , Factor de Transcripción GATA3/genética , Factores Inmunológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Interleucina-4/genética , Minociclina/uso terapéutico , FN-kappa B/genética , Receptores de Antígenos de Linfocitos T/genética , Animales , Asma/complicaciones , Asma/genética , Asma/inmunología , Factor de Transcripción GATA3/agonistas , Factor de Transcripción GATA3/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulina E/genética , Inmunoglobulina E/inmunología , Factores Inmunológicos/farmacología , Inflamación/complicaciones , Inflamación/genética , Inflamación/inmunología , Interleucina-4/antagonistas & inhibidores , Interleucina-4/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Minociclina/farmacología , FN-kappa B/agonistas , FN-kappa B/inmunología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/inmunología , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/efectos de los fármacos
4.
Cell Host Microbe ; 12(5): 657-68, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23159055

RESUMEN

After host cell entry, Salmonella replicate in membrane-bound compartments, which accumulate a dense meshwork of F-actin through the kinase activity of the Salmonella SPI-2 type III secretion effector SteC. We find that SteC promotes actin cytoskeleton reorganization by activating a signaling pathway involving the MAP kinases MEK and ERK, myosin light chain kinase (MLCK) and Myosin IIB. Specifically, SteC phosphorylates MEK directly on serine 200 (S200), a previously unstudied phosphorylation site. S200 phosphorylation is predicted to displace a negative regulatory helix causing autophosphorylation on the known MEK activatory residues, S218 and S222. In support of this, substitution of S200 with alanine prevented phosphorylation on S218 and S222, and phosphomimetic mutations of S200 stimulated phosphorylation of these residues. Both steC-null and kinase-deficient mutant strains displayed enhanced replication in infected cells, suggesting that SteC manipulates the actin cytoskeleton to restrain bacterial growth, thereby regulating virulence.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Células 3T3 , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Femenino , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Fosforilación , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética
5.
J Neurosci ; 32(44): 15495-510, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23115187

RESUMEN

The retrograde transport of Trk-containing endosomes from the axon to the cell body by cytoplasmic dynein is necessary for axonal and neuronal survival. We investigated the recruitment of dynein to signaling endosomes in rat embryonic neurons and PC12 cells. We identified a novel phosphoserine on the dynein intermediate chains (ICs), and we observed a time-dependent neurotrophin-stimulated increase in intermediate chain phosphorylation on this site in both cell types. Pharmacological studies, overexpression of constitutively active MAP kinase kinase, and an in vitro assay with recombinant proteins demonstrated that the intermediate chains are phosphorylated by the MAP kinase ERK1/2, extracellular signal-regulated kinase, a major downstream effector of Trk. Live cell imaging with fluorescently tagged IC mutants demonstrated that the dephosphomimic mutants had significantly reduced colocalization with Trk and Rab7, but not a mitochondrial marker. The phosphorylated intermediate chains were enriched on immunoaffinity-purified Trk-containing organelles. Inhibition of ERK reduced the amount of phospho-IC and the total amount of dynein that copurified with the signaling endosomes. In addition, inhibition of ERK1/2 reduced the motility of Rab7- and TrkB-containing endosomes and the extent of their colocalization with dynein in axons. NGF-dependent survival of sympathetic neurons was significantly reduced by the overexpression of the dephosphomimic mutant IC-1B-S80A, but not WT IC-1B, further demonstrating the functional significance of phosphorylation on this site. These results demonstrate that neurotrophin binding to Trk initiates the recruitment of cytoplasmic dynein to signaling endosomes through ERK1/2 phosphorylation of intermediate chains for their subsequent retrograde transport in axons.


Asunto(s)
Transporte Axonal/fisiología , Citoplasma/fisiología , Dineínas/fisiología , Endosomas/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Receptor trkA/fisiología , Animales , Western Blotting , Membrana Celular/metabolismo , Membrana Celular/fisiología , Supervivencia Celular/fisiología , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Sistema de Señalización de MAP Quinasas/genética , Factor de Crecimiento Nervioso/fisiología , Factores de Crecimiento Nervioso/farmacología , Neuronas/fisiología , Orgánulos/fisiología , Células PC12 , Fosforilación , Plásmidos/genética , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal/fisiología , Transfección
6.
PLoS One ; 6(6): e20710, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21677780

RESUMEN

RACK1 proteins belong to the eukaryote WD40-repeat protein family and function as spatial regulators of multiple cellular events, including signaling pathways, the cell cycle and translation. For this latter role, structural and genetic studies indicate that RACK1 associates with the ribosome through two conserved positively charged amino acids in its first WD40 domain. Unlike RACK1s, including Trypanosoma brucei RACK1 (TbRACK1), only one of these two positively-charged residues is conserved in the first WD40 domain of the Leishmania major RACK1 ortholog, LACK. We compared virulence-attenuated LACK single copy (LACK/-) L. major, with L. major expressing either two LACK copies (LACK/LACK), or one copy each of LACK and TbRACK1 (LACK/TbRACK1), to evaluate the function of these structurally distinct RACK1 orthologs with respect to translation, viability at host temperatures and pathogenesis. Our results indicate that although the ribosome-binding residues are not fully conserved in LACK, both LACK and TbRACK1 co-sedimented with monosomes and polysomes in LACK/LACK and LACK/TbRACK1 L. major, respectively. LACK/LACK and LACK/TbRACK1 strains differed in their sensitivity to translation inhibitors implying that minor sequence differences between the RACK1 proteins can alter their functional properties. While biochemically distinguishable, both LACK/LACK and LACK/TbRACK1 lines were more tolerant of elevated temperatures, resistant to translation inhibitors, and displayed robust pathogenesis in vivo, contrasting to LACK/- parasites.


Asunto(s)
Antígenos de Protozoos/metabolismo , Leishmania major/fisiología , Leishmania major/patogenicidad , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/genética , Ciclo Celular/fisiología , Femenino , Leishmania major/citología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia , Temperatura , Transcripción Genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
7.
Mol Cell Biol ; 30(13): 3233-48, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20439493

RESUMEN

Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Adhesiones Focales/metabolismo , Proteínas Represoras/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Butadienos/metabolismo , Adhesión Celular/fisiología , Línea Celular , Inhibidores Enzimáticos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibronectinas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Nitrilos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Alineación de Secuencia , Vinculina/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/genética
8.
Behav Pharmacol ; 21(2): 121-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20177375

RESUMEN

In contrast to estrogen in female rats, testosterone in male rats may decrease cholinergic activity in the brain, thereby attenuating behaviors mediated by the cholinergic system. To investigate this possibility, the interactive effects of the gonadal hormones and donepezil, an acetylcholinesterase (AChE) inhibitor, on the responding of male rats were examined under a multiple schedule of repeated acquisition and performance of response sequences and on AChE activity in specific brain regions. Donepezil dose-effect curves (0.56-10 mg/kg) were determined in males that were gonadally intact, gonadectomized (GX), GX with testosterone replacement (GX+T) or GX with estradiol replacement (GX+E). In all four groups, donepezil produced dose-dependent rate-decreasing and error-increasing effects in the acquisition and performance components. However, disruptions of response rate and accuracy in both components occurred at lower doses in GX and GX+E males than in intact males. The GX+E males also had the highest percentage of errors under control (saline) conditions in the acquisition components. In terms of AChE activity, GX males had higher levels in the prefrontal cortex, striatum and hippocampus, but lower levels in the midbrain, compared with intact males; hypothalamic and cortical levels were comparable for the GX and intact groups. Together, these results in male rats indicate that the potency of donepezil's disruptive effects on the responding under a complex operant procedure requiring learning and performance of response sequences depends upon the gonadal hormone status, and that the effects of testosterone on cholinergic activity vary among brain regions.


Asunto(s)
Encéfalo/enzimología , Inhibidores de la Colinesterasa/farmacología , Condicionamiento Operante/efectos de los fármacos , Hormonas Gonadales/farmacología , Indanos/farmacología , Piperidinas/farmacología , Animales , Encéfalo/efectos de los fármacos , Donepezilo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estradiol/farmacología , Hormonas Gonadales/deficiencia , Terapia de Reemplazo de Hormonas/psicología , Masculino , Ratas , Ratas Long-Evans , Esquema de Refuerzo , Testosterona/farmacología
9.
Cell Commun Signal ; 7: 26, 2009 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-19930650

RESUMEN

ERK signaling regulates focal adhesion disassembly during cell movement, and increased ERK signaling frequently contributes to enhanced motility of human tumor cells. We previously found that the ERK scaffold MEK Partner 1 (MP1) is required for focal adhesion disassembly in fibroblasts. Here we test the hypothesis that MP1-dependent ERK signaling regulates motility of DU145 prostate cancer cells. We find that MP1 is required for motility on fibronectin, but not for motility stimulated by serum or EGF. Surprisingly, MP1 appears not to function through its known binding partners MEK1 or PAK1, suggesting the existence of a novel pathway by which MP1 can regulate motility on fibronectin. MP1 may function by regulating the stability or expression of paxillin, a key regulator of motility.

10.
Cell Signal ; 19(8): 1621-32, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17553668

RESUMEN

Cell migration is critical for many physiological processes and is often misregulated in developmental disorders and pathological conditions including cancer and neurodegeneration. MAPK signaling and the Rho family of proteins are known regulators of cell migration that exert their influence on cellular cytoskeleton during cell adhesion and migration. Here we review data supporting the view that localized ERK signaling mediated through recently identified scaffold proteins may regulate cell migration.


Asunto(s)
Citoesqueleto/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Transducción de Señal , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Humanos , Modelos Biológicos , Proteínas de Unión al GTP rho/fisiología
11.
Cell Signal ; 19(7): 1488-96, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17314031

RESUMEN

Extracellular signal-Regulated Kinase (ERK) controls a variety of cellular processes, including cell proliferation and cell motility. While oncogenic mutations in Ras and B-Raf result in deregulated ERK activity and proliferation and migration in some tumor cells, other tumors exhibit elevated ERK signaling in the absence of these mutations. Here we provide evidence that PAK can directly activate MEK1 by a mechanism distinct from conventional Ras/Raf mediated activation. We find that PAK phosphorylation of MEK1 serine 298 stimulates MEK1 autophosphorylation on the activation loop, and activation of MEK1 activity towards ERK in in vitro reconstitution experiments. Serines 218 and/or 222 in the MEK1 activation loop are required for PAK-stimulated MEK1 activity towards ERK. MEK2, which is a poor target for PAK phosphorylation in cells, is not activated in this manner. Tissue culture experiments verify that this mechanism is used in suspended fibroblasts expressing mutationally activated PAK1. We speculate that aberrant signaling through PAK may directly induce anchorage-independent MEK1 activation in tumor cells lacking oncogenic Ras or Raf mutations, and that this mechanism may contribute to localized MEK signaling in focal contacts and adhesions during cell adhesion or migration.


Asunto(s)
MAP Quinasa Quinasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células COS , Adhesión Celular , Chlorocebus aethiops , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/enzimología , Fibronectinas/metabolismo , Humanos , Fosforilación , Proteínas Proto-Oncogénicas B-raf/metabolismo , Ratas , Serina/metabolismo , Quinasas p21 Activadas , Proteínas ras/metabolismo
12.
Mol Cell Biol ; 25(12): 5119-33, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15923628

RESUMEN

How the extracellular signal-regulated kinase (ERK) cascade regulates diverse cellular functions, including cell proliferation, survival, and motility, in a context-dependent manner remains poorly understood. Compelling evidence indicates that scaffolding molecules function in yeast to channel specific signals through common components to appropriate targets. Although a number of putative ERK scaffolding proteins have been identified in mammalian systems, none has been linked to a specific biological response. Here we show that the putative scaffold protein MEK partner 1 (MP1) and its partner p14 regulate PAK1-dependent ERK activation during adhesion and cell spreading but are not required for ERK activation by platelet-derived growth factor. MP1 associates with active but not inactive PAK1 and controls PAK1 phosphorylation of MEK1. Our data further show that MP1, p14, and MEK1 serve to inhibit Rho/Rho kinase functions necessary for the turnover of adhesion structures and cell spreading and reveal a signal-channeling function for a MEK1/ERK scaffold in orchestrating cytoskeletal rearrangements important for cell motility.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Factores Despolimerizantes de la Actina , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Adhesión Celular/fisiología , Línea Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Adhesiones Focales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , MAP Quinasa Quinasa 1/genética , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética , Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Alineación de Secuencia , Transducción de Señal/fisiología , Técnicas del Sistema de Dos Híbridos , Quinasas p21 Activadas , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho
13.
J Cell Biochem ; 94(4): 708-19, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15547943

RESUMEN

Specificity in signal transduction can be achieved through scaffolds, anchors, and adapters that assemble generic signal transduction components in specific combinations and locations. MEK Partner-1 (MP1) was identified as a potential "scaffold" protein for the mammalian extracellular signal-regulated kinase (ERK) pathway. To gain insight into the interactions of MP1 with the ERK pathway, we analyzed the ability of MP1 to bind to MEK1, ERK1, and to itself, and the regulation of these interactions. Gel filtration of cell lysates revealed two major MP1 peaks: a broad high molecular weight peak and a 28 kDa complex. An MP1 mutant that lost MEK1 binding no longer enhanced RasV12-stimulated ERK1 activity, and functioned as a dominant negative, consistent with the concept that MP1 function depends on facilitating these oligomerizations. Activation of the ERK pathway by serum or by RasV12 did not detectably affect MP1-MP1 dimerization or MP1-MEK1 interactions, but caused the dissociation of the MP1-ERK1 complex. Surprisingly, pharmacological inhibition of ERK activation did not restore the complex, suggesting that regulation of complex formation occurs independently of ERK phosphorylation. These results support the concept that MP1 functions as a regulator of MAP kinase signaling by binding to MEK1 and regulating its association with a larger signaling complex that may sequentially service multiple molecules of ERK.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Cricetinae , Activación Enzimática , Eliminación de Gen , Humanos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación/genética , Fosforilación , Unión Proteica , Suero , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Mol Cell Biol ; 24(6): 2308-17, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14993270

RESUMEN

Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.


Asunto(s)
Adhesión Celular/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Sitios de Unión/genética , Células COS , Activación Enzimática , Retroalimentación , MAP Quinasa Quinasa 1 , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quinasas p21 Activadas
15.
J Cell Biol ; 162(2): 281-91, 2003 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-12876277

RESUMEN

Activation of the Ras-MAPK signal transduction pathway is necessary for biological responses both to growth factors and ECM. Here, we provide evidence that phosphorylation of S298 of MAPK kinase 1 (MEK1) by p21-activated kinase (PAK) is a site of convergence for integrin and growth factor signaling. We find that adhesion to fibronectin induces PAK1-dependent phosphorylation of MEK1 on S298 and that this phosphorylation is necessary for efficient activation of MEK1 and subsequent MAPK activation. The rapid and efficient activation of MEK and phosphorylation on S298 induced by cell adhesion to fibronectin is influenced by FAK and Src signaling and is paralleled by localization of phospho-S298 MEK1 and phospho-MAPK staining in peripheral membrane-proximal adhesion structures. We propose that FAK/Src-dependent, PAK1-mediated phosphorylation of MEK1 on S298 is central to the organization and localization of active Raf-MEK1-MAPK signaling complexes, and that formation of such complexes contributes to the adhesion dependence of growth factor signaling to MAPK.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células COS , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Chlorocebus aethiops , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Fibroblastos/citología , Fibroblastos/enzimología , Fibronectinas/metabolismo , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Adhesiones Focales/metabolismo , Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/farmacología , MAP Quinasa Quinasa 1 , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/efectos de los fármacos , Proteínas Proto-Oncogénicas c-raf/metabolismo , Pirimidinas/farmacología , Ratas , Proteínas Recombinantes/metabolismo , Quinasas p21 Activadas , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/efectos de los fármacos , Familia-src Quinasas/metabolismo
16.
Mol Cell Biol ; 22(17): 6023-33, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12167697

RESUMEN

Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-delta19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-delta19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Unión al GTP rac/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Adhesión Celular , Chlorocebus aethiops , Medio de Cultivo Libre de Suero/farmacología , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , MAP Quinasa Quinasa 1 , Sustancias Macromoleculares , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Proteínas Recombinantes de Fusión/fisiología , Eliminación de Secuencia , Transfección , Quinasas p21 Activadas
17.
J Biol Chem ; 277(32): 29304-14, 2002 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-12015328

RESUMEN

Activation of signal transduction kinase cascades has been shown to alter androgen receptor (AR) activity. Although it has been suggested that changes in AR phosphorylation might be directly responsible, the basal and regulated phosphorylations of the AR have not been fully determined. We have identified the major sites of AR phosphorylation on ARs expressed in COS-1 cells using a combination of peptide mapping, Edman degradation, and mass spectrometry. We describe the identification of seven AR phosphorylation sites, show that the phosphopeptides seen with exogenously expressed ARs are highly similar to those seen with endogenous ARs in LNCaP cells and show that specific agonists differentially regulate the phosphorylation state of endogenous ARs in LNCaP prostate cancer cells. Treatment of LNCaP cells with the synthetic androgen, R1881, elevates phosphorylation of serines 16, 81, 256, 308, 424, and 650. Ser-94 appears constitutively phosphorylated. Forskolin, epidermal growth factor, and phorbol 12-myristate 13-acetate increase the phosphorylation of Ser-650. The kinetics of phosphorylation of most sites in response to hormone or forskolin is temporally delayed, reaching a maximum at 2 h post-stimulation. The exception is Ser-81, which continues to display increasing phosphorylation at 6 h. These data provide a basis for analyzing mechanisms of cross-talk between growth factor signaling and androgen in prostate development, physiology, and cancer.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Cromatografía de Afinidad , Colforsina/farmacología , Factor de Crecimiento Epidérmico/farmacología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Cinética , Ligandos , Sistema de Señalización de MAP Quinasas , Masculino , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Péptidos/química , Fosfopéptidos/química , Fosforilación , Plásmidos/metabolismo , Proteína Quinasa C/metabolismo , Serina/química , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología , Factores de Tiempo , Transfección , Células Tumorales Cultivadas
18.
J Biol Chem ; 277(10): 8693-701, 2002 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-11751923

RESUMEN

Of the seven signal transducers and activators of transcription that have been identified, STATs 1, 3, and 5a/5b can be activated not only by a multitude of cytokines but also by some growth factors. The data presented here demonstrate that, in contrast to activation by the cytokine, growth hormone (GH), the activation of STAT5b by the growth factor, epidermal growth factor (EGF), requires overexpression of the EGF receptor (EGFR). We have shown that EGF activates STAT5b not only in a HEK293 cell model in which the EGFR is stably overexpressed but also in the MDA-MB468 breast cancer cell line. Furthermore, EGF (but not GH) is able to activate tyrosine phosphorylation of a Tyr-699 mutant of STAT5b. Using metabolic labeling studies as well as site-directed mutagenesis, we have identified three novel EGF-induced tyrosine phosphorylation sites, Tyr-725, Tyr-740, and Tyr-743. Luciferase assays using a STAT5-specific DNA sequence demonstrate that, although Tyr-699 is absolutely required for transcriptional activation, tyrosines 725, 740, and 743 may be involved in a negative regulation of transcription. Because overexpression of the EGFR is common in many cancers, including advanced breast cancer, characterization of EGF-induced STAT5b may have direct implications in therapeutic applications.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Proteínas de la Leche , Transactivadores/metabolismo , Secuencia de Aminoácidos , Western Blotting , Línea Celular , Epítopos , Receptores ErbB/metabolismo , Vectores Genéticos , Humanos , Immunoblotting , Luciferasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/química , Fosforilación , Pruebas de Precipitina , Factor de Transcripción STAT5 , Homología de Secuencia de Aminoácido , Transducción de Señal , Transcripción Genética , Activación Transcripcional , Transfección , Tripsina/química , Tripsina/metabolismo , Células Tumorales Cultivadas , Tirosina/química , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...