Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Med Chem ; 60(7): 3052-3069, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28323425

RESUMEN

In heart failure, the ß-adrenergic receptors (ßARs) become desensitized and uncoupled from heterotrimeric G proteins. This process is initiated by G protein-coupled receptor kinases (GRKs), some of which are upregulated in the failing heart, making them desirable therapeutic targets. The selective serotonin reuptake inhibitor, paroxetine, was previously identified as a GRK2 inhibitor. Utilizing a structure-based drug design approach, we modified paroxetine to generate a small compound library. Included in this series is a highly potent and selective GRK2 inhibitor, 14as, with an IC50 of 30 nM against GRK2 and greater than 230-fold selectivity over other GRKs and kinases. Furthermore, 14as showed a 100-fold improvement in cardiomyocyte contractility assays over paroxetine and a plasma concentration higher than its IC50 for over 7 h. Three of these inhibitors, including 14as, were additionally crystallized in complex with GRK2 to give insights into the structural determinants of potency and selectivity of these inhibitors.


Asunto(s)
Diseño de Fármacos , Quinasa 2 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Paroxetina/análogos & derivados , Paroxetina/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Cristalografía por Rayos X , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Paroxetina/sangre , Paroxetina/metabolismo , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/metabolismo
3.
J Med Chem ; 59(8): 3793-807, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27050625

RESUMEN

G protein-coupled receptors (GPCRs) are central to many physiological processes. Regulation of this superfamily of receptors is controlled by GPCR kinases (GRKs), some of which have been implicated in heart failure. GSK180736A, developed as a Rho-associated coiled-coil kinase 1 (ROCK1) inhibitor, was identified as an inhibitor of GRK2 and co-crystallized in the active site. Guided by its binding pose overlaid with the binding pose of a known potent GRK2 inhibitor, Takeda103A, a library of hybrid inhibitors was developed. This campaign produced several compounds possessing high potency and selectivity for GRK2 over other GRK subfamilies, PKA, and ROCK1. The most selective compound, 12n (CCG-224406), had an IC50 for GRK2 of 130 nM, >700-fold selectivity over other GRK subfamilies, and no detectable inhibition of ROCK1. Four of the new inhibitors were crystallized with GRK2 to give molecular insights into the binding and kinase selectivity of this class of inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Bovinos , Células Cultivadas , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Conformación Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Quinasas Asociadas a rho/antagonistas & inhibidores
4.
DNA Repair (Amst) ; 12(3): 196-204, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23273506

RESUMEN

Schizosaccharomyces pombe contains two paralogous proteins, Mag1 and Mag2, related to the helix-hairpin-helix (HhH) superfamily of alkylpurine DNA glycosylases from yeast and bacteria. Phylogenetic analysis of related proteins from four Schizosaccharomyces and other fungal species shows that the Mag1/Mag2 duplication is unique to the genus Schizosaccharomyces and most likely occurred in its ancestor. Mag1 excises N3- and N7-alkylguanines and 1,N(6)-ethenoadenine from DNA, whereas Mag2 has been reported to have no detectible alkylpurine base excision activity despite high sequence and active site similarity to Mag1. To understand this discrepancy we determined the crystal structure of Mag2 bound to abasic DNA and compared it to our previously determined Mag1-DNA structure. In contrast to Mag1, Mag2 does not flip the abasic moiety into the active site or stabilize the DNA strand 5' to the lesion, suggesting that it is incapable of forming a catalytically competent protein-DNA complex. Subtle differences in Mag1 and Mag2 interactions with the DNA duplex illustrate how Mag2 can stall at damage sites without fully engaging the lesion. We tested our structural predictions by mutational analysis of base excision and found a single amino acid responsible at least in part for Mag2's lack of activity. Substitution of Mag2 Asp56, which caps the helix at the base of the DNA intercalation loop, with the corresponding serine residue in Mag1 endows Mag2 with ɛA excision activity comparable to Mag1. This work provides novel insight into the chemical and physical determinants by which the HhH glycosylases engage DNA in a catalytically productive manner.


Asunto(s)
ADN Glicosilasas/química , ADN de Hongos/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Ácido Apurínico/química , Ácido Apurínico/genética , Dominio Catalítico , Cristalografía por Rayos X , Daño del ADN , ADN de Hongos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Propiedades de Superficie
5.
Neurotoxicology ; 32(5): 518-25, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21159318

RESUMEN

γ-Glutamylcysteine (γ-GC) is an intermediate molecule of the glutathione (GSH) synthesis pathway. In the present study, we tested the hypothesis that γ-GC pretreatment in cultured astrocytes and neurons protects against hydrogen peroxide (H(2)O(2))-induced oxidative injury. We demonstrate that pretreatment with γ-GC increases the ratio of reduced:oxidized GSH levels in both neurons and astrocytes and increases total GSH levels in neurons. In addition, γ-GC pretreatment decreases isoprostane formation both in neurons and astrocytes, as well as nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation in astrocytes in response to H(2)O(2)-induced oxidative stress. Furthermore, GSH and isoprostane levels significantly correlate with increased neuron and astrocyte viability in cells pretreated with γ-GC. Finally, we demonstrate that administration of a single intravenous injection of γ-GC to mice significantly increases GSH levels in the brain, heart, lungs, liver, and in muscle tissues in vivo. These results support a potential therapeutic role for γ-GC in the reduction of oxidant stress-induced damage in tissues including the brain.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Dipéptidos/farmacología , Glutatión/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...