Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 20(11): 5811-5826, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37750872

RESUMEN

ABBV-167, a phosphate prodrug of BCL-2 inhibitor venetoclax, was recently progressed into the clinic as an alternative means of reducing pill burden for patients in high-dose indications. The dramatically enhanced aqueous solubility of ABBV-167 allowed for high drug loading within a crystalline tablet and, when administered in phase I clinical study, conferred venetoclax exposure commensurate with the equivalent dose administered as an amorphous solid dispersion. In enabling the progression into the clinic, we performed a comprehensive evaluation of the CMC development aspects of this beyond the rule of five (bRo5) prodrug. Adding a phosphate moiety resulted in excessively complex chemical speciation and solid form landscapes with significant physical-chemical stability liabilities. A combination of experimental and computational methods including microelectron diffraction (MicroED), total scattering, tablet colorimetry, finite element, and molecular dynamics modeling were used to understand CMC developability across drug substance and product manufacture and storage. The prodrug's chemical structural characteristics and loose crystal packing were found to be responsible for the loss of crystallinity during its manufacturing, which in turn led to high solid-state chemical reactivity and poor shelf life stability. The ABBV-167 case exemplifies key CMC development challenges for complex chemical matter such as bRo5 phosphate prodrugs with significant ramifications during drug substance and drug product manufacturing and storage.


Asunto(s)
Profármacos , Humanos , Profármacos/química , Fosfatos , Desarrollo de Medicamentos , Solubilidad , Comprimidos
2.
Mol Cancer Ther ; 20(6): 999-1008, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33785651

RESUMEN

Since gaining approval for the treatment of chronic lymphocytic leukemia (CLL), the BCL-2 inhibitor venetoclax has transformed the treatment of this and other blood-related cancers. Reflecting the large and hydrophobic BH3-binding groove within BCL-2, venetoclax has significantly higher molecular weight and lipophilicity than most orally administered drugs, along with negligible water solubility. Although a technology-enabled formulation successfully achieves oral absorption in humans, venetoclax tablets have limited drug loading and therefore can present a substantial pill burden for patients in high-dose indications. We therefore generated a phosphate prodrug (3, ABBV-167) that confers significantly increased water solubility to venetoclax and, upon oral administration to healthy volunteers either as a solution or high drug-load immediate release tablet, extensively converts to the parent drug. Additionally, ABBV-167 demonstrated a lower food effect with respect to venetoclax tablets. These data indicate that beyond-rule-of-5 molecules can be successfully delivered to humans via a solubility-enhancing prodrug moiety to afford robust exposures of the parent drug following oral dosing.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Profármacos/uso terapéutico , Sulfonamidas/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Estudios Cruzados , Femenino , Voluntarios Sanos , Humanos , Profármacos/farmacología , Sulfonamidas/farmacología
3.
ACS Med Chem Lett ; 11(10): 1829-1836, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33062160

RESUMEN

Herein we describe the discovery of A-1331852, a first-in-class orally active BCL-XL inhibitor that selectively and potently induces apoptosis in BCL-XL-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-XL inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp3-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-XL. A-1331852 has since been used as a critical tool molecule for further exploring BCL-2 family protein biology, while also representing an attractive entry into a drug discovery program.

4.
J Pharm Sci ; 107(8): 2079-2090, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29548976

RESUMEN

Micellar solubilization is an important concept in the delivery of poorly water-soluble drugs. The rational selection of the type and the amount of surfactant to be incorporated in a formulation require comprehensive solubility studies. These studies are time and material demanding, both of which are scarce, especially during late discovery and early development stages. We hypothesized that, if the solubilization mechanism or molecular interaction is similar, the solubilization capacity ratio (a newly defined parameter) is dictated by micellar structures, independent of drugs. We tested this hypothesis by performing solubility studies using 8 commonly used nonionic surfactants and 17 insoluble compounds with diverse characteristics. The results show a striking constant solubilization capacity ratio among the 8 nonionic surfactants, which allow us to develop predictive solubility models for both single and mixed surfactant systems. The vast majority of the predicted solubility values, using our developed models, fall within 2-fold of the experimentally determined values with high correlation coefficients. As expected, systems involving ionic surfactant sodium dodecyl sulfate, used as a negative control, do not follow this trend. Deviations from the model, observed in this study or envisioned, were discussed. In conclusion, we have established predictive models that are capable of predicting solubility in a wide range of nonionic micellar solutions with only 1 experimental measurement. The application of such a model will significantly reduce resource and greatly enhance drug product development efficiency.


Asunto(s)
Micelas , Preparaciones Farmacéuticas/química , Tensoactivos/química , Algoritmos , Simulación por Computador , Modelos Químicos , Solubilidad , Agua/química
5.
ACS Omega ; 2(8): 4207-4215, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023717

RESUMEN

The stability of antibody-drug conjugates (ADCs) in circulation is critical for maximum efficacy and minimal toxicity. An ADC reaching the intended target intact can deliver the highest possible drug load to the tumor and reduce off-target toxicity from free drug in the blood. As such, assessment of ADC stability is a vital piece of data during development. However, traditional ADC stability assays can be manually intensive, low-throughput, and require large quantities of ADC material. Here, we introduce an automated, high-throughput plasma stability assay for screening drug release and aggregation over 144 h for up to 40 ADCs across five matrices simultaneously. The amount of ADC material during early drug development is often limited, so this assay was implemented in 384-well format to minimize material requirements to <100 µg of each ADC and 100 µL of plasma per species type. Drug release and aggregation output were modeled using nonlinear regression equations to calculate formation rates for each data type. A set of 15 ADCs with different antibodies and identical valine-citrulline-p-aminobenzylcarbamate-monomethylauristatin E linker-drug payloads was tested and formation rates were compared across ADCs and between species, revealing several noteworthy trends. In particular, a wide range in aggregation was found when altering only the antibody, suggesting a key role for plasma stability screening early in the development process to find and remove antibody candidates with the potential to create unstable ADCs. The assay presented here can be leveraged to provide stability data on new chemistry and antibody screening initiatives, select the best candidate for in vivo studies, and provide results that highlight stability issues inherent to particular ADC designs throughout all stages of ADC development.

6.
Pharm Res ; 32(10): 3350-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26017301

RESUMEN

PURPOSE: Many enabling formulations give rise to supersaturated solutions wherein the solute possesses higher thermodynamic activity gradients than the solute in a saturated solution. Since flux across a membrane is driven by solute activity rather than concentration, understanding how solute thermodynamic activity varies with solution composition, particularly in the presence of solubilizing additives, is important in the context of passive absorption. METHODS: In this study, a side-by-side diffusion cell was used to evaluate solute flux for solutions of nifedipine and felodipine in the absence and presence of different solubilizing additives at various solute concentrations. RESULTS: At a given solute concentration above the equilibrium solubility, it was observed that the solubilizing additives could reduce the membrane flux, indicating that the extent of supersaturation can be reduced. However, the flux could be increased back to the same maximum value (which was determined by the concentration where liquid-liquid phase separation (LLPS) occurred) by increasing the total solute concentration. Qualitatively, the shape of the curves of solute flux through membrane as a function of total solute concentration is the same in the absence and presence of solubilizing additives. Quantitatively, however, LLPS occurs at higher solute concentrations in the presence of solubilizing additives. Moreover, the ratios of the LLPS onset concentration and equilibrium solubility vary significantly in the absence and presence of additives. CONCLUSIONS: These findings clearly point out the flaws in using solute concentration in estimating solute activity or supersaturation, and reaffirm the use of flux measurements to understand supersaturated systems. Clear differentiation between solubilization and supersaturation, as well as thorough understanding of their respective impacts on membrane transport kinetics is important for the rational design of enabling formulations for poorly soluble compounds.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Soluciones Farmacéuticas/química , Química Farmacéutica/métodos , Difusión , Felodipino/química , Absorción Intestinal/efectos de los fármacos , Cinética , Nifedipino/química , Solubilidad
7.
ACS Med Chem Lett ; 5(10): 1088-93, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25313317

RESUMEN

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.

8.
J Pharm Sci ; 103(9): 2736-2748, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24382592

RESUMEN

Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies.


Asunto(s)
Membranas/metabolismo , Preparaciones Farmacéuticas/química , Soluciones Farmacéuticas/química , Agua/química , Transporte Biológico/fisiología , Química Farmacéutica/métodos , Cristalización/métodos , Difusión , Sistemas de Liberación de Medicamentos/métodos , Felodipino/química , Nifedipino/química , Solubilidad , Termodinámica
9.
Drug Metab Dispos ; 42(2): 207-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24212376

RESUMEN

Navitoclax (ABT-263), a Bcl-2 family inhibitor and ABT-199, a Bcl-2 selective inhibitor, are high molecular weight, high logP molecules that show low solubility in aqueous media. While these properties are associated with low oral bioavailability (F), both navitoclax and ABT-199 showed moderate F in preclinical species. The objective of the described study was to determine if lymphatic transport contributes to the systemic availability of navitoclax and ABT-199 in dogs. The intravenous pharmacokinetics of navitoclax and ABT-199 were determined in intact (noncannulated) dogs. In oral studies, tablets (100 mg) of navitoclax and ABT-199 were administered to both intact and thoracic lymph duct-cannulated (TDC) dogs. The clearance of navitoclax and ABT-199 was low; 0.673 and 0.779 ml/min per kilogram, respectively. The volume of distribution of both compounds was low (0.5-0.7 l/kg). The half-lives of navitoclax and ABT-199 were 22.2 and 12.9 hours, respectively. The F of navitoclax and ABT-199 were 56.5 and 38.8%, respectively, in fed intact dogs. In fed TDC dogs, 13.5 and 4.67% of the total navitoclax and ABT-199 doses were observed in lymph with the % F of navitoclax and ABT-199 of 21.7 and 20.2%, respectively. The lower lymphatic transport of ABT-199 corresponds to the lower overall % F of ABT-199 versus navitoclax despite similar systemic availability via the portal vein (similar % F in TDC animals). This is consistent with the higher long chain triglyceride solubility of navitoclax (9.2 mg/ml) versus ABT-199 (2.2 mg/ml). In fasted TDC animals, lymph transport of navitoclax and ABT-199 decreased by 1.8-fold and 10-fold, respectively.


Asunto(s)
Compuestos de Anilina/farmacocinética , Antineoplásicos/farmacocinética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Linfa/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacocinética , Administración Oral , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Área Bajo la Curva , Disponibilidad Biológica , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Perros , Ayuno/metabolismo , Semivida , Inyecciones Intravenosas , Masculino , Tasa de Depuración Metabólica , Modelos Animales , Periodo Posprandial , Solubilidad , Sulfonamidas/administración & dosificación , Sulfonamidas/química , Conducto Torácico
10.
Nat Med ; 19(2): 202-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23291630

RESUMEN

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-X(L) inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2-selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2-dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2-dependent hematological cancers.


Asunto(s)
Antineoplásicos/farmacología , Plaquetas/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacología , Compuestos de Anilina/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perros , Femenino , Células HeLa , Humanos , Ratones , Ratones SCID , Proteínas Proto-Oncogénicas c-bcl-2/química , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/antagonistas & inhibidores
11.
Biointerphases ; 1(4): 134-41, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20408626

RESUMEN

Poly(ethylene glycol) (PEG) is widely used in the pharmaceutical, biotechnology, and medical device industries. Although PEG is a biocompatible polymer that has enjoyed widespread use in drug delivery technology, it is not considered adhesive toward mucosal tissue. Here the authors describe a simple approach to enhancing mucoadsorption of PEG polymers through end group functionalization with the amino acid 3,4-dihydroxyphenyl-L-alanine (DOPA). Using a variety of surface analytical techniques, the authors show that a four-armed poly(ethylene glycol) polymer functionalized with a single DOPA residue at the terminus of each arm (PEG-(DOPA)(4)) adsorbed strongly to surface immobilized mucin. Successful mucoadsorption of PEG-(DOPA)(4) across several pH values ranging from 4.5 to 8.5 was demonstrated, and control experiments with unfunctionalized four-arm PEG demonstrated that mucoadsorption of PEG-(DOPA)(4) is due largely to the presence of DOPA end groups. This conclusion was confirmed with single molecule atomic force microscopy experiments that revealed a surprisingly strong interaction force of 371+/-93 pN between DOPA and adsorbed mucin. Direct comparisons with known mucoadhesive polymers revealed that PEG-(DOPA)(4) was equal to or more adsorptive to immobilized mucin than these existing mucoadhesive polymers. In addition to demonstrating significant enhancement of mucoadhesive properties of PEG by DOPA functionalization, this study also introduced a new simple approach for rapid screening of mucoadhesive polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...