Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Intervalo de año de publicación
1.
Biochimie ; 207: 1-10, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36403756

RESUMEN

Varespladib (LY315920) is a potent inhibitor of human group IIA phospholipase A2 (PLA2) originally developed to control inflammatory cascades of diseases associated with high or dysregulated levels of endogenous PLA2. Recently, varespladib was also found to inhibit snake venom PLA2 and PLA2-like toxins. Herein, ex vivo neuromuscular blocking activity assays were used to test the inhibitory activity of varespladib. The binding affinity between varespladib and a PLA2-like toxin was quantified and compared with other potential inhibitors for this class of proteins. Crystallographic and bioinformatic studies showed that varespladib binds to PrTX-I and BthTX-I into their hydrophobic channels, similarly to other previously characterized PLA2-like myotoxins. However, a new finding is that an additional varespladib binds to the MDiS region, a particular site that is related to muscle cell disruption by these toxins. The present results further advance the characterization of the molecular interactions of varespladib with PLA2-like myotoxins and provide additional evidence for this compound as a promising inhibitor candidate for different PLA2 and PLA2-like toxins.


Asunto(s)
Bothrops , Venenos de Crotálidos , Toxinas Biológicas , Animales , Humanos , Bothrops/metabolismo , Neurotoxinas , Cetoácidos , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/química , Fosfolipasas A2/química
2.
Neuroscience ; 460: 31-42, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548369

RESUMEN

In vertebrates, muscle activity is dependent on acetylcholine (ACh) released from neuromuscular junctions (NMJs), and changes in cholinergic neurotransmission are linked to a variety of neuromuscular diseases, including congenital myasthenic syndromes (CMS). The storage and release of ACh depends on the activity of the Vesicular Acetylcholine Transporter (VAChT), a rate-limiting step for cholinergic neurotransmission whose loss of function mutations was shown to cause human congenital myasthenia. However, we know much less about increased VAChT activity, due to copy number variations, for example. Therefore, here we investigated the impact of increased VAChT expression and consequently ACh levels at the synaptic cleft of the diaphragm NMJs. We analyzed structure and function of nerve and muscles from a mouse model of cholinergic hyperfunction (ChAT-ChR2-EYFP) with increased expression of VAChT. Our results showed a significant increase of ACh released under evoked stimuli. However, we observed deleterious changes in synaptic vesicles cycle (impaired endocytosis and decrease in vesicles number), together with structural alterations of NMJs. Interestingly, ultrastructure analyses showed that synaptic vesicles from ChAT-ChR2-EYFP mice NMJs were larger, which might be related to increased ACh load. We also observed that these larger synaptic vesicles were less rounded in comparison with control. Finally, we showed that ChAT-ChR2-EYFP mice NMJs have compromised safety factor, possible due to the structural alterations we described. These findings reveal that physiological cholinergic activity is important to maintain the structure and function of the neuromuscular system and help to understand some of the neuromuscular adverse effects experienced by chronically increased NMJ neurotransmission, such as individuals treated with cholinesterase inhibitors.


Asunto(s)
Variaciones en el Número de Copia de ADN , Diafragma , Animales , Colinérgicos , Diafragma/metabolismo , Ratones , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Transmisión Sináptica , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
3.
Biochimie ; 170: 163-172, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31978419

RESUMEN

Envenoming by snakebite is an important global health issue that has received little attention, leading the World Health Organization to naming it as neglected tropical disease. Several snakebites present serious local symptoms manifested on victims that may not be efficiently neutralized by serum therapy. Phospholipase A2-like (PLA2-like) toxins are present in Viperidae venoms and are responsible for local myotoxic activity. Herein, we investigated the association between BthTX-I toxin and caftaric acid (CFT), a molecule present in plants. CFT neutralized neuromuscular blocking and muscle-damaging activities promoted by BthTX-I. Calorimetric and light-scattering assays demonstrated that CFT inhibitor interacted with dimeric BthTX-I. Bioinformatics simulations indicated that CFT inhibitor binds to the toxin's hydrophobic channel (HCh). According to the current myotoxic mechanism, three different regions of PLA2-like toxins have specific tasks: protein allosteric activation (HCh), membrane dockage (MDoS), and membrane rupture (MDiS). We propose CFT inhibitor interferes with the allosteric activation, which is related to the conformation change leading to the exposure/alignment of MDoS/MDiS region. This is the first report of a PLA2-like toxin fully inhibited by a compound that interacts only with its HCh region. Thus, CFT is a novel candidate to complement serum therapy and improve the treatment of snakebite.


Asunto(s)
Venenos de Crotálidos/toxicidad , Miotoxicidad/tratamiento farmacológico , Bloqueantes Neuromusculares/toxicidad , Fenoles/farmacología , Fosfolipasas A2/química , Animales , Masculino , Ratones , Miotoxicidad/etiología , Fosfolipasas A2/metabolismo , Conformación Proteica
4.
Sci Rep ; 9(1): 510, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679550

RESUMEN

Ophidian accidents are considered an important neglected tropical disease by the World Health Organization. Particularly in Latin America, Bothrops snakes are responsible for the majority of the snakebite envenomings that are not efficiently treated by conventional serum therapy. Thus, the search for simple and efficient inhibitors to complement this therapy is a promising research area, and a combination of functional and structural assays have been used to test candidate ligands against specific ophidian venom compounds. Herein, we tested a commercial drug (acetylsalicylic acid, ASA) and a plant compound with antiophidian properties (rosmarinic acid, RA) using myographic, crystallographic and bioinformatics experiments with a phospholipase A2-like toxin, MjTX-II. MjTX-II/RA and MjTX-II/ASA crystal structures were solved at high resolution and revealed the presence of ligands bound to different regions of the toxin. However, in vitro myographic assays showed that only RA is able to prevent the myotoxic effects of MjTX-II. In agreement with functional results, molecular dynamics simulations showed that the RA molecule remains tightly bound to the toxin throughout the calculations, whereas ASA molecules tend to dissociate. This approach aids the design of effective inhibitors of PLA2-like toxins and, eventually, may complement serum therapy.


Asunto(s)
Aspirina , Cinamatos , Venenos de Crotálidos , Depsidos , Fosfolipasas A2 Grupo II , Simulación de Dinámica Molecular , Animales , Aspirina/química , Aspirina/farmacología , Cinamatos/química , Cinamatos/farmacología , Venenos de Crotálidos/química , Venenos de Crotálidos/toxicidad , Cristalografía por Rayos X , Depsidos/química , Depsidos/farmacología , Fosfolipasas A2 Grupo II/química , Fosfolipasas A2 Grupo II/toxicidad , Masculino , Ratones , Estructura Cuaternaria de Proteína , Ácido Rosmarínico
5.
Artículo en Inglés | MEDLINE | ID: mdl-30181737

RESUMEN

BACKGROUND: Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). METHODS: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. RESULTS: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C. gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C. gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. CONCLUSION: The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.

6.
Biochim Biophys Acta Gen Subj ; 1862(12): 2728-2737, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30251662

RESUMEN

BACKGROUND: Specific compounds found in vegetal species have been demonstrated to be efficient inhibitors of snake toxins, such as phospholipase A2-like (PLA2-like) proteins. These particular proteins, present in several species of vipers (Viperidae), induce a severe local myotoxic effect in prey and human victims, and this effect is often not efficiently neutralized by the regular serum therapy. PLA2-like proteins have been functionally and structurally studied since the early 1990s; however, a comprehensive molecular mechanism was proposed only recently. METHODS: Myographic and histological techniques were used to evaluate the inhibitory effect of chicoric acid (CA) against BthTX-I myotoxin. Isothermal titration calorimetry assays were used to measure the affinity between the inhibitor and the toxin. X-ray crystallography was used to reveal details of this interaction. RESULTS: CA prevented the blockade of indirectly evoked muscle contraction and inhibited muscle damage induced by BthTX-I. The inhibitor binds to the toxin with the highest affinity measured for a natural compound in calorimetric assays. The crystal structure and molecular dynamics simulations demonstrated that CA binds at the entrance of the hydrophobic channel of the toxin and binds to one of the clusters that participates in membrane disruption. CONCLUSIONS: CA prevents the myotoxic activity of the toxin, preventing its activation by simultaneous binding with two critical regions. GENERAL SIGNIFICANCE: CA is a potential myotoxic inhibitor to other PLA2-like proteins and a possible candidate to complement serum therapy.


Asunto(s)
Ácidos Cafeicos/farmacología , Venenos de Crotálidos/antagonistas & inhibidores , Músculos/efectos de los fármacos , Fosfolipasas A2/metabolismo , Succinatos/farmacología , Animales , Bothrops , Ácidos Cafeicos/química , Venenos de Crotálidos/química , Venenos de Crotálidos/metabolismo , Venenos de Crotálidos/toxicidad , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Simulación de Dinámica Molecular , Estructura Molecular , Contracción Muscular/efectos de los fármacos , Músculos/patología , Succinatos/química
7.
Sci Rep ; 8(1): 10317, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985425

RESUMEN

Local myonecrosis is the main event resulting from snakebite envenomation by the Bothrops genus and, frequently, it is not efficiently neutralized by antivenom administration. Proteases, phospholipases A2 (PLA2) and PLA2-like toxins are found in venom related to muscle damage. Functional sites responsible for PLA2-like toxins activity have been proposed recently; they consist of a membrane docking-site and a membrane rupture-site. Herein, a combination of functional, biophysical and crystallographic techniques was used to characterize the interaction between suramin and MjTX-I (a PLA2-like toxin from Bothrops moojeni venom). Functional in vitro neuromuscular assays were performed to study the biological effects of the protein-ligand interaction, demonstrating that suramin neutralizes the myotoxic effect of MjTX-I. Calorimetric assays showed two different binding events: (i) inhibitor-protein interactions and (ii) toxin oligomerization processes. These hypotheses were also corroborated with dynamic light and small angle X-ray scattering assays. The crystal structure of the MjTX-I/suramin showed a totally different interaction mode compared to other PLA2-like/suramin complexes. Thus, we suggested a novel myotoxic mechanism for MjTX-I that may be inhibited by suramin. These results can further contribute to the search for inhibitors that will efficiently counteract local myonecrosis in order to be used as an adjuvant of conventional serum therapy.


Asunto(s)
Fosfolipasas A2/metabolismo , Proteínas de Reptiles/metabolismo , Suramina/química , Animales , Sitios de Unión , Bothrops , Venenos de Crotálidos/metabolismo , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Fosfolipasas A2/química , Estructura Cuaternaria de Proteína , Proteínas de Reptiles/química , Dispersión del Ángulo Pequeño , Suramina/metabolismo , Termodinámica
9.
Neurochem Int ; 116: 30-42, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29530757

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by chorea, incoordination and psychiatric and behavioral symptoms. The leading cause of death in HD patients is aspiration pneumonia, associated with respiratory dysfunction, decreased respiratory muscle strength and dysphagia. Although most of the motor symptoms are derived from alterations in the central nervous system, some might be associated with changes in the components of motor units (MU). To explore this hypothesis, we evaluated morphofunctional aspects of the diaphragm muscle in a mouse model for HD (BACHD). We showed that the axons of the phrenic nerves were not affected in 12-months-old BACHD mice, but the axon terminals that form the neuromuscular junctions (NMJs) were more fragmented in these animals in comparison with the wild-type mice. In BACHD mice, the synaptic vesicles of the diaphragm NMJs presented a decreased exocytosis rate. Quantal content and quantal size were smaller and there was less synaptic depression whereas the estimated size of the readily releasable vesicle pool was not changed. At the ultrastructure level, the diaphragm NMJs of these mice presented fewer synaptic vesicles with flattened and oval shapes, which might be associated with the reduced expression of the vesicular acetylcholine transporter protein. Furthermore, mitochondria of the diaphragm muscle presented signs of degeneration in BACHD mice. Interestingly, despite all these cellular alterations, BACHD diaphragmatic function was not compromised, suggesting a higher resistance threshold of this muscle. A putative resistance mechanism may be protecting this vital muscle. Our data contribute to expanding the current understanding of the effects of mutated huntingtin in the neuromuscular synapse and the diaphragm muscle function.


Asunto(s)
Diafragma/metabolismo , Enfermedad de Huntington/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Diafragma/patología , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/patología , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo
10.
J. venom. anim. toxins incl. trop. dis ; 24: 22, 2018. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-954854

RESUMEN

Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). Methods: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. Results: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. Conclusion: The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.(AU)


Asunto(s)
Animales , Masculino , Ratas , Antivenenos/toxicidad , Venenos de Cnidarios/farmacología , Venenos de Crotálidos/inmunología , Bothrops , Neoplasias/inmunología
11.
J. venom. anim. toxins incl. trop. dis ; 24: 1-11, 2018. ilus, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484757

RESUMEN

Background: Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). Methods: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. Results: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells...


Asunto(s)
Animales , Bioprospección , Ensayos de Selección de Medicamentos Antitumorales , Venenos de Cnidarios/farmacología , Cnidarios , Región del Caribe
12.
Toxicol Appl Pharmacol ; 334: 8-17, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28867438

RESUMEN

BACKGROUND AND PURPOSE: Crotoxin (CTX), a heterodimeric phospholipase A2 (PLA2) neurotoxin from Crotalus durissus terrificus snake venom, promotes irreversible blockade of neuromuscular transmission. Indirect electrophysiological evidence suggests that CTX exerts a primary inhibitory action on transmitter exocytosis, yet contribution of a postsynaptic action of the toxin resulting from nicotinic receptor desensitization cannot be excluded. Here, we examined the blocking effect of CTX on nerve-evoked transmitter release measured directly using radioisotope neurochemistry and video microscopy with the FM4-64 fluorescent dye. EXPERIMENTAL APPROACH: Experiments were conducted using mice phrenic-diaphragm preparations. Real-time fluorescence video microscopy and liquid scintillation spectrometry techniques were used to detect transmitter exocytosis and nerve-evoked [3H]-acetylcholine ([3H]ACh) release, respectively. Nerve-evoked myographic recordings were also carried out for comparison purposes. KEY RESULTS: Both CTX (5µg/mL) and its basic PLA2 subunit (CB, 20µg/mL) had biphasic effects on nerve-evoked transmitter exocytosis characterized by a transient initial facilitation followed by a sustained decay. CTX and CB reduced nerve-evoked [3H]ACh release by 60% and 69%, respectively, but only the heterodimer, CTX, decreased the amplitude of nerve-evoked muscle twitches. CONCLUSION AND IMPLICATIONS: Data show that CTX exerts a presynaptic inhibitory action on ACh release that is highly dependent on its intrinsic PLA2 activity. Given the high safety margin of the neuromuscular transmission, one may argue that the presynaptic block caused by the toxin is not enough to produce muscle paralysis unless a concurrent postsynaptic inhibitory action is also exerted by the CTX heterodimer.


Asunto(s)
Acetilcolina/antagonistas & inhibidores , Venenos de Crotálidos/toxicidad , Crotalus/fisiología , Crotoxina/toxicidad , Chaperonas Moleculares/metabolismo , Bloqueo Neuromuscular , Acetilcolina/metabolismo , Animales , Venenos de Crotálidos/química , Crotoxina/química , Femenino , Masculino , Ratones , Chaperonas Moleculares/química , Músculos/efectos de los fármacos , Neurotoxinas/toxicidad , Fosfolipasas A2 , Subunidades de Proteína
13.
Sci Rep ; 7: 43885, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256632

RESUMEN

Crotoxin (CTX) is the main neurotoxin found in Crotalus durissus rattlesnake venoms being composed by a nontoxic and non-enzymatic component (CA) and a toxic phospholipase A2 (CB). Previous crystallographic structures of CTX and CB provided relevant insights: (i) CTX structure showed a 1:1 molecular ratio between CA and CB, presenting three tryptophan residues in the CA/CB interface and one exposed to solvent; (ii) CB structure displayed a tetrameric conformation. This study aims to provide further information on the CTX mechanism of action by several biophysical methods. Our data show that isolated CB can in fact form tetramers in solution; however, these tetramers can be dissociated by CA titration. Furthermore, CTX exhibits a strong reduction in fluorescence intensity and lifetime compared with isolated CA and CB, suggesting that all tryptophan residues in CTX may be hidden by the CA/CB interface. By companying spectroscopy fluorescence and SAXS data, we obtained a new structural model for the CTX heterodimer in which all tryptophans are located in the interface, and the N-terminal region of CB is largely exposed to the solvent. Based on this model, we propose a toxic mechanism of action for CTX, involving the interaction of N-terminal region of CB with the target before CA dissociation.


Asunto(s)
Fenómenos Biofísicos , Crotoxina/química , Crotoxina/toxicidad , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia
14.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2066-78, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457430

RESUMEN

Local myonecrosis resulting from snakebite envenomation is not efficiently neutralized by regular antivenom administration. This limitation is considered to be a significant health problem by the World Health Organization. Phospholipase A2-like (PLA2-like) proteins are among the most important proteins related to the muscle damage resulting from several snake venoms. However, despite their conserved tertiary structure compared with PLA2s, their biological mechanism remains incompletely understood. Different oligomeric conformations and binding sites have been identified or proposed, leading to contradictory data in the literature. In the last few years, a comprehensive hypothesis has been proposed based on fatty-acid binding, allosteric changes and the presence of two different interaction sites. In the present study, a combination of techniques were used to fully understand the structural-functional characteristics of the interaction between suramin and MjTX-II (a PLA2-like toxin). In vitro neuromuscular studies were performed to characterize the biological effects of the protein-ligand interaction and demonstrated that suramin neutralizes the myotoxic activity of MjTX-II. The high-resolution structure of the complex identified the toxin-ligand interaction sites. Calorimetric assays showed two different binding events between the protein and the inhibitor. It is demonstrated for the first time that the inhibitor binds to the surface of the toxin, obstructing the sites involved in membrane docking and disruption according to the proposed myotoxic mechanism. Furthermore, higher-order oligomeric formation by interaction with interfacial suramins was observed, which may also aid the inhibitory process. These results further substantiate the current myotoxic mechanism and shed light on the search for efficient inhibitors of the local myonecrosis phenomenon.


Asunto(s)
Antivenenos/farmacología , Bothrops/metabolismo , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/metabolismo , Fosfolipasas A/antagonistas & inhibidores , Fosfolipasas A/metabolismo , Suramina/farmacología , Animales , Sitios de Unión , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Venenos de Crotálidos/química , Venenos de Crotálidos/toxicidad , Cristalografía por Rayos X , Masculino , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfolipasas A/química , Fosfolipasas A/toxicidad
15.
Toxicon ; 103: 1-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26095535

RESUMEN

The Micrurus genus is the American representative of Elapidae family. Micrurus spixii is endemic of South America and northern states of Brazil. Elapidic venoms contain neurotoxins that promote curare-mimetic neuromuscular blockage. In this study, biochemical and functional characterizations of M. spixii crude venom were performed and a new neurotoxic phospholipase A2 called MsPLA2-I was isolated. M. spixii crude venom caused severe swelling in the legs of tested mice and significant release of creatine kinase (CK) showing its myotoxic activity. Leishmanicidal activity against Leishmania amazonensis (IC50 1.24 µg/mL) was also observed, along with antiplasmodial activity against Plasmodium falciparum, which are unprecedented for Micrurus venoms. MsPLA2-I with a Mr 12,809.4 Da was isolated from the crude venom of M. spixii. The N-terminal sequencing of a fragment of 60 amino acids showed 80% similarity with another PLA2 from Micrurus altirostris. This toxin and the crude venom showed phospholipase activity. In a mouse phrenic nerve-diaphragm preparation, M. spixii venom and MsPLA2-I induced the blockage of both direct and indirect twitches. While the venom presented a pronounced myotoxic activity, MsPLA2-I expressed a summation of neurotoxic activity. The results of this study make M. spixii crude venom promising compounds in the exploration of molecules with microbicidal potential.


Asunto(s)
Venenos Elapídicos/química , Elapidae/metabolismo , Neurotoxinas/toxicidad , Fosfolipasas A2/toxicidad , Secuencia de Aminoácidos , Animales , Antiparasitarios/farmacología , Brasil , Creatina Quinasa/metabolismo , Concentración 50 Inhibidora , Leishmania/efectos de los fármacos , Leishmania/crecimiento & desarrollo , Ratones , Datos de Secuencia Molecular , Neurotoxinas/aislamiento & purificación , Fosfolipasas A2/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Conformación Proteica , Toxinas Biológicas
16.
Biochimie ; 95(12): 2365-75, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24035779

RESUMEN

Crotoxin is a neurotoxin from Crotalus durissus terrificus venom that shows immunomodulatory, anti-inflammatory, antimicrobial, antitumor and analgesic activities. Structurally, this toxin is a heterodimeric complex composed by a toxic basic PLA2 (Crotoxin B or CB) non-covalently linked to an atoxic non-enzymatic and acidic component (Crotapotin, Crotoxin A or CA). Several CA and CB isoforms have been isolated and characterized, showing that the crotoxin venom fraction is, in fact, a mixture of different molecules derived from the combination of distinct subunit isoforms. Intercro (IC) is a protein from the same snake venom which presents high similarity in primary structure to CB, indicating that it could be an another isoform of this toxin. In this work, we compare IC to the crotoxin complex (CA/CB) and/or CB in order to understand its functional aspects. The experiments with IC revealed that it is a new toxin with different biological activities from CB, keeping its catalytic activity but presenting low myotoxicity and absence of neurotoxic activity. The results also indicated that IC is structurally similar to CB isoforms, but probably it is not able to form a neurotoxic active complex with crotoxin A as observed for CB. Moreover, structural and phylogenetic data suggest that IC is a new toxin with possible toxic effects not related to the typical CB neurotoxin.


Asunto(s)
Venenos de Crotálidos/metabolismo , Fosfolipasas A2/metabolismo , Secuencia de Aminoácidos , Animales , Venenos de Crotálidos/química , Venenos de Crotálidos/genética , Venenos de Crotálidos/aislamiento & purificación , Crotalus , Masculino , Ratones , Modelos Moleculares , Fosfolipasas A2/química , Fosfolipasas A2/genética , Fosfolipasas A2/aislamiento & purificación , Filogenia , Alineación de Secuencia , Venenos de Serpiente/metabolismo
17.
Toxicon ; 72: 52-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23810946

RESUMEN

Lys49-phospholipases A2 (Lys49-PLA2s) are proteins found in bothropic snake venoms (Viperidae family) and belong to a class of proteins which presents a phospholipase A2 scaffold but are catalytically inactive. These proteins (also known as PLA2s-like toxins) exert a pronounced local myotoxic effect and are not neutralized by antivenom, being their study relevant in terms of medical and scientific interest. Despite of the several studies reported in the literature for this class of proteins only a partial consensus has been achieved concerning their functional-structural relationships. In this work, we present a comprehensive structural and functional study with the MjTX-II, a dimeric Lys49-PLA2 from Bothrops moojeni venom which includes: (i) high-resolution crystal structure; (ii) dynamic light scattering and bioinformatics studies in order to confirm its biological assembly; (iii) myographic and electrophysiological studies and, (iv) comparative studies with other Lys49-PLA2s. These comparative analyses let us to get important insights into the role of Lys122 amino acid, previously indicated as responsible for Lys49-PLA2s catalytic inactivity and added important elements to establish the correct biological assembly for this class of proteins. Furthermore, we show two unique sequential features of MjTX-II (an amino acid insertion and a mutation) in comparison to all bothropic Lys49-PLA2s that lead to a distinct way of ligand binding at the toxin's hydrophobic channel and also, allowed the presence of an additional ligand molecule in this region. These facts suggest a possible particular mode of binding for long-chain ligands that interacts with MjTX-II hydrophobic channel, a feature that may directly affect the design of structure-based ligands for Lys49-PLA2s.


Asunto(s)
Bothrops , Venenos de Crotálidos/química , Fosfolipasas A2/química , Secuencia de Aminoácidos , Animales , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de Proteína , Relación Estructura-Actividad
18.
PLoS One ; 8(4): e60610, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23573271

RESUMEN

The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities in response to environmental changes and adaptation to new preys.


Asunto(s)
Bothrops , Venenos de Crotálidos/química , Fosfolipasas A2/química , Proteínas de Reptiles/química , Animales , Cromatografía en Gel , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/farmacología , Cristalografía por Rayos X , Enlace de Hidrógeno , Técnicas In Vitro , Lisina/química , Masculino , Ratones , Modelos Moleculares , Contracción Muscular/efectos de los fármacos , Tamaño de la Partícula , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Filogenia , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas de Reptiles/aislamiento & purificación , Proteínas de Reptiles/farmacología , Dispersión del Ángulo Pequeño
19.
Toxicon ; 61: 16-25, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23142504

RESUMEN

Understanding the biological activity profile of the snake venom components is fundamental for improving the treatment of snakebite envenomings and may also contribute for the development of new potential therapeutic agents. In this work, we tested the effects of BthTX-I, a Lys49 PLA(2) homologue from the Bothrops jararacussu snake venom. While this toxin induces conspicuous myonecrosis by a catalytically independent mechanism, a series of in vitro studies support the hypothesis that BthTX-I might also exert a neuromuscular blocking activity due to its ability to alter the integrity of muscle cell membranes. To gain insight into the mechanisms of this inhibitory neuromuscular effect, for the first time, the influence of BthTX-I on nerve-evoked ACh release was directly quantified by radiochemical and real-time video-microscopy methods. Our results show that the neuromuscular blockade produced by in vitro exposure to BthTX-I (1 µM) results from the summation of both pre- and postsynaptic effects. Modifications affecting the presynaptic apparatus were revealed by the significant reduction of nerve-evoked [(3)H]-ACh release; real-time measurements of transmitter exocytosis using the FM4-64 fluorescent dye fully supported radiochemical data. The postsynaptic effect of BthTX-I was characterized by typical histological alterations in the architecture of skeletal muscle fibers, increase in the outflow of the intracellular lactate dehydrogenase enzyme and progressive depolarization of the muscle resting membrane potential. In conclusion, these findings suggest that the neuromuscular blockade produced by BthTX-I results from transient depolarization of skeletal muscle fibers, consequent to its general membrane-destabilizing effect, and subsequent decrease of evoked ACh release from motor nerve terminals.


Asunto(s)
Acetilcolina/metabolismo , Venenos de Crotálidos/farmacología , Neuronas Motoras/metabolismo , Terminales Presinápticos/metabolismo , Animales , Bothrops , Diafragma/efectos de los fármacos , Exocitosis/efectos de los fármacos , Femenino , Colorantes Fluorescentes , L-Lactato Deshidrogenasa/metabolismo , Masculino , Microelectrodos , Microscopía por Video , Neuronas Motoras/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Miografía , Fosfolipasas A2/farmacología , Nervio Frénico/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Ratas , Ratas Wistar
20.
J Ethnopharmacol ; 112(3): 490-7, 2007 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-17540522

RESUMEN

Aqueous extract of Casearia sylvestris (Flacourtiaceae) has been shown to inhibit enzymatic and biological properties of some Bothrops and Crotalus venoms and their purified phospholipase A(2) (PLA(2)) toxins. In this work we evaluated the influence of C. sylvestris aqueous extract upon neuromuscular blocking and muscle damaging activities of some PLA(2)s (crotoxin from C. durissus terrificus, bothropstoxin-I from B. jararacussu, piratoxin-I from B. pirajai and myotoxin-II from B. moojeni) in mouse phrenic-diaphragm preparations. Crotoxin (0.5 microM) and all other PLA(2) toxins (1.0 microM) induced irreversible and time-dependent blockade of twitches. Except for crotoxin, all PLA(2) toxins induced significant muscle damage indices, assessed by microscopic analysis. Preincubation of bothropstoxin-I, piratoxin-I or myotoxin-II with C. sylvestris extract (1:5 (w/w), 30 min, 37 degrees C) significantly prevented the neuromuscular blockade of preparations exposed to the mixtures for 90 min; the extent of protection ranged from 93% to 97%. The vegetal extract also neutralized the muscle damage (protection of 80-95%). Higher concentration of the C. sylvestris extract (1:10, w/w) was necessary to neutralize by 90% the neuromuscular blockade induced by crotoxin. These findings expanded the spectrum of C. sylvestris antivenom activities, evidencing that it may be a good source of potentially useful PLA(2) inhibitors.


Asunto(s)
Casearia/química , Crotoxina/antagonistas & inhibidores , Diafragma/efectos de los fármacos , Inhibidores de Fosfolipasa A2 , Extractos Vegetales/farmacología , Animales , Brasil , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/toxicidad , Crotoxina/toxicidad , Diafragma/inervación , Diafragma/fisiología , Fosfolipasas A2 Grupo II/antagonistas & inhibidores , Fosfolipasas A2 Grupo II/toxicidad , Técnicas In Vitro , Masculino , Ratones , Microscopía Electrónica , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/ultraestructura , Miofibrillas/efectos de los fármacos , Miofibrillas/ultraestructura , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Tallos de la Planta/química , Plantas Medicinales/química , Proteínas de Reptiles/antagonistas & inhibidores , Proteínas de Reptiles/toxicidad , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA