Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Intervalo de año de publicación
1.
Toxins (Basel) ; 16(2)2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38393157

RESUMEN

Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.


Asunto(s)
Alcaloides de Pirrolicidina , Alcaloides de Pirrolicidina/toxicidad , Alcaloides de Pirrolicidina/química , Plantas/química , Suplementos Dietéticos/toxicidad , Suplementos Dietéticos/análisis , Carcinógenos
2.
Plants (Basel) ; 12(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960097

RESUMEN

With the increase in global life expectancy, maintaining health into old age becomes a challenge, and research has thus concentrated on various strategies which aimed to mitigate the effects of skin aging. Aromatic plants stand out as promising sources of anti-aging compounds due to their secondary metabolites, particularly essential oils (EOs). The aim of this study was to ascribe to Ferulago lutea EO several biological activities that could be useful in the context of skin aging. The EO was obtained using hydrodistillation and characterized by gas chromatography-mass spectrometry (GC/MS). The anti-inflammatory potential was assessed using lipopolysaccharide (LPS)-stimulated macrophages. The effect on cell migration was disclosed using scratch wound assay. Lipogenesis was induced using T0901317, hyperpigmentation with 3-isobutyl-1-methylxantine (IBMX) and senescence with etoposide. Our results show that the EO was characterized mainly by α-pinene and limonene. The EO was able to decrease nitric oxide (NO) release as well as iNOS and pro-IL-1ß protein levels. The EO promoted wound healing while decreasing lipogenesis and having depigmenting effects. The EO also reduced senescence-associated ß-galactosidase, p21/p53 protein levels and the nuclear accumulation of γH2AX. Overall, our study highlights the properties of F. lutea EO that make it a compelling candidate for dermocosmetics applications.

3.
Pharmaceutics ; 15(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37631356

RESUMEN

Fungal infections are associated with high morbidity and mortality rates, being highly prevalent in patients with underlying health complications such as chronic lung disease, HIV, cancer, and diabetes mellitus. To mitigate these infections, the development of effective antifungals is imperative, with plants standing out as promising sources of bioactive compounds. In the present study, we focus on the antibiofilm potential of Lavandula multifida essential oil (EO) against dermatophyte strains and Candida albicans. The EO was characterized using GC and GC-MS, and its antifungal effect was assessed on both biofilm formation and disruption. Biofilm mass, extracellular matrix, and viability were quantified using crystal violet, safranin, and XTT assays, respectively, and morphological alterations were confirmed using optical and scanning electron microscopy. L. multifida EO showed very high amounts of carvacrol and was very effective in inhibiting and disrupting fungal biofilms. The EO significantly decreased biofilm mass and viability in all tested fungi. In addition, a reduction in dermatophytes' extracellular matrix was observed, particularly during biofilm formation. Morphological alterations were evident in mature biofilms, with a clear decrease in hypha diameter. These promising results support the use of L. multifida EO in the development of effective plant-based antifungal products.

4.
BMC Complement Med Ther ; 23(1): 139, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131150

RESUMEN

BACKGROUND: Plants of the Myrcia genus have been widely used in folk medicine to treat various diseases, including cancer. Myrcia splendens species has a diverse chemical constitution, but the biological activities of its essential oil have not been well investigated. In this study to out the chemistry characterization of essential oil (EO) from the leaves of the species M. splendens from Brazil and evaluate cytotoxic effect in A549 lung cancer cells. METHODS: M. splendens EO was obtained by hydrodistillation and analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). EO was isolated and evaluated for cellular viability in tumor cell lines by MTT assay. The evaluation of the formation of clones and the migratory capacity of the A549 cells treated with EO was done by the clonogenic assay and the wound healing assay. Morphological changes were observed in A549 cells by fluorescence using Phalloidin/FITC and DAPI. RESULTS: 22 compounds were identified in the chemical analysis of EO, corresponding to 88% of the sample. Major compounds were the sesquiterpenic hydrocarbons bicyclogermacrene (15.4%), germacrene D (8.9%) and E-caryophyllene (10.1%). The biological analysis of the EO showed high cytotoxic activity with an IC50 below 20 µg/ml in the THP-1, A549 and B16-F10 tumor cells. The treatment with EO reduced colony formation and inhibited the migratory capacity of A549 cells. Furthermore, apoptotic morphological changes in the nucleus and cytoplasm of A549 cells was observed after of treatment with EO. CONCLUSION: The findings of this study suggest that the M. splendens EO has cytotoxic compounds for the A549 lung cancer cells. Treatment with the EO decreased the colony formation and reduced the ability of lung cancer cells to migrate. Future studies may be used to isolate compounds from the EO for the study of lung cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Myrtaceae , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Células A549 , Cromatografía de Gases y Espectrometría de Masas , Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico
5.
Nutrients ; 15(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111149

RESUMEN

Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the hydrodistillation residual water (HRW), a discarded by-product of EO hydrodistillation. The phytochemical characterization of EO and HRW was assessed by GC-MS and HPLC-PDA-ESI-MSn, respectively. The DPPH, ABTS, and FRAP assays were used to disclose the antioxidant properties. The anti-inflammatory potential was evaluated using lipopolysaccharide-stimulated macrophages by assessing NO production, iNOS, and pro-IL-1ß protein levels. Cell migration was evaluated using the scratch wound assay, and the etoposide-induced senescence was used to assess the modulation of senescence. The EO is mainly characterized by carvacrol, while the HRW is predominantly characterized by rosmarinic acid. The HRW exerts a stronger antioxidant effect in the DPPH and FRAP assays, whereas the EO was the most active sample in the ABTS assay. Both extracts reduce NO, iNOS, and pro-IL-1ß. The EO has no effect on cell migration and presents anti-senescence effects. In opposition, HRW reduces cell migration and induces cellular senescence. Overall, our study highlights interesting pharmacological properties for both extracts, EO being of interest as an anti-aging ingredient and HRW relevant in cancer therapy.


Asunto(s)
Lamiaceae , Aceites Volátiles , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Lamiaceae/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antioxidantes/química
6.
Gels ; 9(4)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37102907

RESUMEN

We aimed to incorporate Thymbra capitata essential oil (TCEO), a potent antimicrobial natural product against bacterial vaginosis (BV)-related bacteria, in a suitable drug delivery system. We used vaginal sheets as dosage form to promote immediate relief of the typical abundant vaginal discharge with unpleasant odour. Excipients were selected to promote the healthy vaginal environment reestablishment and bioadhesion of formulations, while the TCEO acts directly on BV pathogens. We characterized vaginal sheets with TCEO in regard to technological characterization, predictable in vivo performance, in vitro efficacy and safety. Vaginal sheet D.O (acid lactic buffer, gelatine, glycerine, chitosan coated with TCEO 1% w/w) presented a higher buffer capacity and ability to absorb vaginal fluid simulant (VFS) among all vaginal sheets with EO, showing one of the most promising bioadhesive profiles, an excellent flexibility and structure that allow it to be easily rolled for application. Vaginal sheet D.O with 0.32 µL/mL TCEO was able to significantly reduce the bacterial load of all in vitro tested Gardnerella species. Although vaginal sheet D.O presented toxicity at some concentrations, this product was developed for a short time period of treatment, so this toxicity can probably be limited or even reversed when the treatment ends.

7.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985696

RESUMEN

Increasing soil salinisation represents a serious threat to food security, and therefore the exploitation of high-yielding halophytes, such as Salicornia and Sarcocornia, needs to be considered not merely in arid regions but worldwide. In this study, Salicornia ramosissima and Sarcocornia perennis alpini were evaluated for nutrients, bioactive compounds, antioxidant capacity, and contaminants. Both were shown to be nutritionally relevant, exhibiting notable levels of crude fibre and ash, i.e., 11.26-15.34 and 39.46-40.41% dry weight (dw), respectively, and the major minerals were Na, K, and Mg. Total phenolics thereof were 67.05 and 38.20 mg of gallic acid equivalents/g extract dw, respectively, mainly p-coumaric acid and quercetin. Both species displayed antioxidant capacity, but S. ramossima was prominent in both the DPPH and ß-carotene bleaching assays. Aflatoxin B1 was detected in S. ramosissima, at 5.21 µg/Kg dw, which may pose a health threat. The Cd and Pb levels in both were low, but the 0.01 mg/Kg Hg in S. perennis alpini met the maximum legal limit established for marine species including algae. Both species exhibit high potential for use in the agro-food, cosmetics, and pharmaceutical sectors, but specific regulations and careful cultivation strategies need to be implemented, in order to minimise contamination risks by mycotoxins and heavy metals.


Asunto(s)
Chenopodiaceae , Metales Pesados , Antioxidantes/química , Plantas Tolerantes a la Sal/química , Chenopodiaceae/química , Carotenoides
8.
Antioxidants (Basel) ; 12(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36829810

RESUMEN

Chritmum maritimum, sea fennel, is a facultative halophyte used in salads, soups, and sauces, as well as used to prepare medicinal juices and aqueous extracts (AE) to treat several ailments. Its essential oil (EO) is used as a spice and aromatizing. In this work, the nutritional (crude protein, fiber, lipids, and ashes content) and HPLC-PDA phenolic profiles were determined. Furthermore, the antioxidant potential of the infusion and of the decoction, as well as the antibacterial activity of both, the AE and EO, were assessed against food-contaminating bacteria. The composition of the EO was also established. Sea fennel exhibited considerable fiber (34.3 ± 1.92%) and mineral content (23.6 ± 4.8%). AE contains chlorogenic acid as the major phenolic compound, 49.7 ± 0.8 mg/g in the infusion dry extract and (26.8 ± 0.9 mg/g in the decoction dry extract). EO contains high amounts of monoterpene hydrocarbons, namely γ-terpinene and sabinene. In regards to the antioxidant activity, IC50 values for the infusion and decoction were, respectively: 36.5 ± 1.4 µg/mL and 44.7 ± 4.4 µg/mL in the DPPH assay; 37.3 ± 2.6 µg/mL and 38.4 ± 1.8 µg/mL, in the ABTS assay. EO is particularly active against Bacillus cereus and Lactobacillus plantarum. The results support the use of sea fennel AE and EO as a potential alternative preservative ingredient for feeds, foods, pharmaceutical, and cosmetic industries, due to the antioxidant activity of infusion and decoction, and antibacterial properties of essential oil.

9.
Antibiotics (Basel) ; 12(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36671380

RESUMEN

Fungal infections and the accompanying inflammatory responses are associated with great morbidity and mortality due to the frequent relapses triggered by an increased resistance to antifungal agents. Furthermore, this inflammatory state can be exacerbated during inflammaging and cellular senescence. Essential oils (EO) are receiving increasing interest in the field of drug discovery due to their lipophilic nature and complex composition, making them suitable candidates in the development of new antifungal drugs and modulators of numerous molecular targets. This work chemically characterized the EO from Santolina rosmarinifolia L., collected in Setúbal (Portugal), and assessed its antifungal potential by determining its minimum inhibitory (MIC) and minimum lethal (MLC) concentration in accordance with the Clinical Laboratory Standard Guidelines (CLSI) guidelines, as well as its effect on several Candida albicans virulence factors. The anti-inflammatory effect was unveiled using lipopolysaccharide (LPS)-stimulated macrophages by assessing several pro-inflammatory mediators. The wound healing and anti-senescence potential of the EO was also disclosed. The EO was mainly characterized by ß-pinene (29.6%), borneol (16.9%), myrcene (15.4%) and limonene (5.7%). It showed a strong antifungal effect against yeasts and filamentous fungi (MIC = 0.07-0.29 mg/mL). Furthermore, it inhibited dimorphic transition (MIC/16), decreased biofilm formation with a preeminent effect after 24 h (MIC/2) and disrupted preformed biofilms in C. albicans. Additionally, the EO decreased nitric oxide (NO) release (IC50 = 0.52 mg/mL) and pro-IL-1ß and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages, promoted wound healing (91% vs. 81% closed wound) and reduced cellular senescence (53% vs. 73% ß-galactosidase-positive cells). Overall, this study highlights the relevant pharmacological properties of S. rosmarinifolia, opening new avenues for its industrial exploitation.

10.
Crit Rev Food Sci Nutr ; 63(8): 1078-1101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34338575

RESUMEN

Halophytes are salt-tolerant plants that inhabit environments in which they are exposed to extreme stress, wherefore they exhibit conserved and divergent metabolic responses different from those of conventional plants. Thus, the synthesis and accumulation of metabolites, especially of those oxidative stress-related such as phenolic compounds, should be investigated. The potential of halophytes as a source of phenolics and their prospective industrial applications are evaluated based on a comprehensive review of the scientific literature on the phenolic compounds of more than forty halophytes and their biological activities. Additionally, an overview of the analytical methodologies adopted for phenolics determination in halophytes is provided. Finally, the prospective uses and beneficial effects of the phenolic preparations from these plants are discussed. Halophytes are complex matrices, exhibiting a wide variety of phenolics in their composition, wherefore the results can be greatly affected depending on the organ plant under analysis and the extraction methodology, especially the extraction solvent used. High-performance liquid chromatography, coupled with diode array detection (HPLC-DAD) or mass spectrometry (HPLC-MS), are the most used technique. Halophytes biosynthesize phenolics in concentrations that justify the remarkable antioxidant and antimicrobial activities shown, making them ideal sources of bioactive molecules to be employed in a multitude of sectors.


Asunto(s)
Fenoles , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/química , Plantas Tolerantes a la Sal/metabolismo , Fenoles/análisis , Cromatografía Líquida de Alta Presión , Antioxidantes/farmacología , Extractos Vegetales/química
12.
J Ethnopharmacol ; 302(Pt A): 115830, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36243295

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus mastichina (L.) L. (TM) and Cistus ladanifer L. (CL) are two Portuguese autochthonous species with traditional skin application in folk medicine. TM is majorly known for its antiseptic and wound healing properties, as an external anti-inflammatory agent and for its application in folk cosmetics and hygiene products. Its use in acne vulgaris has also been reported. CL is traditionally used in remedies for wounds, ulcers and other skin ailments such as psoriasis and eczema. Its application has been found useful due to its anti-inflammatory, astringent, wound healing and antiseptic properties. AIM OF THE STUDY: With this work, we aimed to investigate relevant bioactivities related with the traditional application of TM and CL essential oils (EOs) and hydrolates (by-products of EO production) in skin ailments. Specifically their in vitro antioxidant, anti-inflammatory, cytotoxic, wound healing and antimicrobial properties were evaluated. The chemical composition of both EOs and respective hydrolates was also characterized. MATERIALS AND METHODS: Chemical characterization of EOs and hydrolates was performed by GC-FID and GC-MS. Cellular biocompatibility was evaluated using the MTT assay in macrophages (RAW 264.7) and fibroblasts (L929) cell lines. Anti-inflammatory activity was investigated by studying nitric oxide (NO) production by macrophages with Griess reagent. Wound healing potential was evaluated with the scratch-wound assay. The antioxidant potential was studied by the DPPH scavenging method. Antimicrobial activity was evaluated by broth microdilution assay against relevant microbial strains and skin pathogens, namely Staphylococcus aureus, Staphylococcus epidermidis, Cutibacterium acnes, Pseudomonas aeruginosa, Escherichia coli, Candida albicans and Aspergillus brasiliensis. RESULTS: The major compounds present in TM and CL EOs were 1,8-cineole and α-pinene, respectively. 1,8-cineole and E-pinocarveol were the major compounds in the correspondent hydrolates. CL EO presented the highest anti-inflammatory potential [EC50 = 0.002% (v/v)], still with significant cytotoxicity [IC50 = 0.012% (v/v)]. TM preparations presented anti-inflammatory potential, also presenting higher biocompatibility. The same profile was present on fibroblasts regarding biocompatibility of the tested preparations. CL EO and hydrolate increased fibroblasts' migration by 155.7% and 148.4%, respectively. TM hydrolate presented a milder activity than CL hydrolate, but wound healing potential was still present, increasing cell migration by 125.1%. All preparations presented poor antioxidant capacity. CL EO presented higher antimicrobial activity, with MICs ranging from 0.06% (v/v) to 2% (v/v), against different microorganisms. CONCLUSIONS: Anti-inflammatory and skin repairing potential were present for CL preparations. TM hydrolate presented an interesting biocompatible profile on both cell lines, also presenting anti-inflammatory potential. Furthermore, EOs from both species presented antimicrobial activity against a panel of different microorganisms. These in vitro bioactivities support some of their traditional skin applications, specifically regarding their antiseptic, wound healing and anti-inflammatory uses.


Asunto(s)
Antiinfecciosos Locales , Antiinfecciosos , Cistus , Aceites Volátiles , Thymus (Planta) , Antioxidantes/farmacología , Antioxidantes/química , Eucaliptol , Thymus (Planta)/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Escherichia coli , Antiinflamatorios/farmacología
13.
Front Cell Infect Microbiol ; 12: 824860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601098

RESUMEN

Bacterial vaginosis (BV) is associated with serious gynaecologic and obstetric complications. The hallmark of BV is the presence of a polymicrobial biofilm on the vaginal epithelium, but BV aetiology is still a matter of debate. We have previously developed an in vitro biofilm model that included three BV-associated species, but, up to now, no studies are available whereby more bacterial species are grown together to better mimic the in vivo situation. Herein, we characterized the first polymicrobial BV biofilm consisting of six cultivable BV-associated species by using both in vitro and ex vivo vaginal tissue models. Both models revealed that the six species were able to incorporate the polymicrobial biofilm, at different bacterial concentrations. As it has been thought that this polymicrobial biofilm may increase the survival of BV-associated species when exposed to antibiotics, we also assessed if the Thymbra capitata essential oil (EO), which has recently been shown to be highly bactericidal against several Gardnerella species, could maintain its anti-biofilm activity against this polymicrobial biofilm. Under our experimental conditions, T. capitata EO exhibited a high antibacterial effect against polymicrobial biofilms, in both tested models, with a significant reduction in the biofilm biomass and the number of culturable cells. Overall, this study shows that six BV-associated species can grow together and form a biofilm both in vitro and when using an ex vivo model. Moreover, the data obtained herein should be considered in further applications of T. capitata EO as an antimicrobial agent fighting BV.


Asunto(s)
Aceites Volátiles , Vaginosis Bacteriana , Antibacterianos/farmacología , Bacterias , Biopelículas , Femenino , Gardnerella , Humanos , Aceites Volátiles/farmacología , Embarazo , Vagina/microbiología , Vaginosis Bacteriana/microbiología
14.
Pharmacol Res ; 180: 106151, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35247601

RESUMEN

For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.


Asunto(s)
Cardiomiopatías , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Animales , Conexina 43 , Modelos Animales de Enfermedad , Eucaliptol/uso terapéutico , Ventrículos Cardíacos/metabolismo , Homeostasis , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertrofia Ventricular Derecha/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Disfunción Ventricular Derecha/metabolismo
15.
Sci Rep ; 12(1): 4417, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292704

RESUMEN

Bacterial vaginosis (BV) is the most common vaginal infection affecting women worldwide. This infection is characterized by the loss of the dominant Lactobacillus community in the vaginal microbiota and an increase of anaerobic bacteria, that leads to the formation of a polymicrobial biofilm, mostly composed of Gardnerella spp. Treatment of BV is normally performed using broad-spectrum antibiotics, such as metronidazole and clindamycin. However, the high levels of recurrence of infection after treatment cessation have led to a demand for new therapeutic alternatives. Thymbra capitata essential oils (EOs) are known to have a wide spectrum of biological properties, including antibacterial activity. Thus, herein, we characterized two EOs of T. capitata and tested their antimicrobial activity as well as some of their main components, aiming to assess possible synergistic effects. Our findings showed that carvacrol and ρ-cymene established a strong synergistic antimicrobial effect against planktonic cultures of Gardnerella spp. On biofilm, carvacrol and linalool at sub-MIC concentrations proved more efficient in eliminating biofilm cells, while showing no cytotoxicity observed in a reconstituted human vaginal epithelium. The antibiofilm potential of the EOs and compounds was highlighted by the fact cells were not able to recover culturability after exposure to fresh medium.


Asunto(s)
Vaginosis Bacteriana , Monoterpenos Acíclicos , Antibacterianos/farmacología , Monoterpenos Ciclohexánicos , Cimenos/farmacología , Femenino , Gardnerella , Gardnerella vaginalis , Humanos , Vagina/microbiología , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología
16.
Pharmaceutics ; 14(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35335937

RESUMEN

Eucalyptus globulus is planted extensively for pulp, paper and wood production. Although bioactive compounds obtained from its biomass are used as cosmetics ingredients, the skin effects were not yet fully explored. In order to fill this gap, this work aimed to study the protective effect against skin damage provided by the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and by an extract obtained from the hydrodistillation residual water (HRW). The major compound identified in the EO was 1,8-Cineole, and the phenolic acids in the HRW included gallic acid as the main phenolic constituent. Moreover, non-toxic EO and HRW concentrations were shown to have anti-aging skin effects in vitro, decreasing age-related senescence markers, namely ß-galactosidase and matrix metalloproteinases activation, as well as collagen type 1 upregulation. In addition, EO and HRW were found to exhibit depigmenting effects by inhibiting tyrosinase and melanin production, along with potent anti-inflammatory properties. Furthermore, the absence of skin irritation and sensitization in cells exposed to EO and HRW revealed the safety of both extracts for topical use. Taken together, these results highlight the beneficial effects of extracts obtained from Eucalyptus globulus biomass for skin aesthetic and health purposes, which should be explored deeply for the prediction of future pharmaceutical and dermocosmetics industrial applications.

17.
Plants (Basel) ; 11(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161351

RESUMEN

Portuguese lavenders remain undervalued in global markets due to the lack of high-quality end-products and scarcity of scientific-based studies validating their bioactive potential. Moreover, chemical variability is frequent in these species, and can compromise both safety and efficacy. In the present study, the anti-inflammatory potential of L. luisieri and L. pedunculata, two highly prevalent species in Portugal, was assessed and correlated with their chemical variability. Representative samples with distinct chemical profiles were selected to assess the anti-inflammatory effect on LPS-stimulated macrophages. L. luisieri essential oil with low quantities of necrodane derivatives was the most potent at inhibiting NO production. Interestingly, the essential oil was more effective than its main compounds (1,8-cineole and fenchone), assessed alone or in combination. Our results also demonstrated a significant effect of the oil on the expression of the inflammatory proteins (iNOS and pro-IL-1ß) and on the NF-κB pathway. Overall, this study highlights the impact of chemical variability on oils' efficacy by showing distinct effects among the chemotypes. We also identify L. luisieri essential oil, with low quantities of necrodane derivatives, as the most promising in the mitigation of the inflammatory response, thus corroborating its traditional uses and paving the way for the development of herbal medicinal products.

18.
J Ethnopharmacol ; 287: 114935, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34954264

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus × citriodorus (Pers.) Schreb. is an interspecific hybrid between Thymus pulegioides and Thymus vulgaris, known for its pharmacological activities as diaphoretic, deodorant, antiseptic and disinfectant, the last mostly related with its antimicrobial activity. The folk use of other extracts, as hydrolates, have also been disseminated, as regulators of oily skin with anti-acne effect. AIM OF THE STUDY: We aimed to evaluate the anti-acne potential of two Thymus x citriodorus (TC) preparations, the essential oil (EO) and the hydrolate, to be used as active ingredients for skin applications. Specifically, we intend to validate their anti-acne potential by describing their activity on acne related bacteria, bacterial virulence, anti-oxidant and anti-inflammatory potential, and biocompatibility on inflammatory cells. Additionally, we aimed to report their ecotoxicity under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), thus focusing not only on the consumer, but also on environmental safety assessment. MATERIALS AND METHODS: Minimum inhibitory concentration (MIC) against C. acnes, S. aureus and S. epidermidis was evaluated. Minimum lethal concentration (MLC) was also determined. The effect on C. acnes biofilm formation and disruption was evaluated with crystal violet staining. Anti-inflammatory activity was investigated on LPS-stimulated mouse macrophages (RAW 264.7), by studying nitric oxide (NO) production (Griess reagent) and cellular biocompatibility through MTT assay. In-vitro NO and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging potential were also evaluated. The ecotoxicity was evaluated using Daphnia magna acute toxicity assays. RESULTS: EO presented direct antimicrobial activity, with visual MICs ranging from 0.06% for S. epidermidis and C. acnes to 0.125% for S. aureus. MLCs were higher than the obtained MICs. Hydrolate revealed visual MIC only for C. acnes. TC essential oil was effective in preventing biofilm formation and disrupting preformed biofilms even at sub-inhibitory concentrations. Hydrolate showed a more modest anti-biofilm effect. Regarding anti-inflammatory activity, TC hydrolate has a higher cellular biocompatibility. Still, both plant preparations were able to inhibit at least 50% of NO production at non-cytotoxic concentrations. Both EO and hydrolate have poor anti-oxidant activities. Regarding the ecotoxicity, TC essential oil was classified under acute 3 category, while the hydrolate has proved to be nontoxic, in accordance to the GHS. CONCLUSIONS: These results support the anti-acne value of different TC preparations for different applications. TC hydrolate by presenting higher biocompatibility, anti-inflammatory potential and the ability to modulate C. acnes virulence, can be advantageous in a product for everyday application. On the other hand, EO by presenting a marked antimicrobial, anti-biofilm and anti-inflammatory activities, still with some cytotoxicity, may be better suited for application in acute flare-ups, for short treatment periods.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Thymus (Planta)/química , Acné Vulgar/tratamiento farmacológico , Animales , Antibacterianos/aislamiento & purificación , Antiinflamatorios/aislamiento & purificación , Biopelículas/efectos de los fármacos , Daphnia , Ratones , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/metabolismo , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacología , Extractos Vegetales/toxicidad , Propionibacterium acnes/efectos de los fármacos , Células RAW 264.7 , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Pruebas de Toxicidad Aguda
19.
Chem Biodivers ; 18(12): e2100653, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34786843

RESUMEN

The chemical composition and in vitro biological activities of the essential oil (EO) of Micromeria macrosiphon Coss. and M. arganietorum (J. Emb.) R. Morales, two Lamiaceae endemic to south Morocco, were investigated. GC/MS analysis resulted in the identification of 36 metabolites from the EO of M. macrosiphon, 45 from M. arganietorum. Borneol was the major metabolite in both oils and together with related derivatives such as camphor, accounted for 2/3 of the EO of M. macrosiphon, 1/3 of those of M. arganietorum. Pinene and terpinene derivatives were also present in high proportions. From a chemotaxonomic point of view, the composition of the examined samples may be related to those of other species endemic to Macaronesia. Both EOs showed significant toxicity towards liver HepG2 and melanoma B16 4A5 tumor cell lines at 100 µg/mL; however, they were also cytotoxic towards S17 normal cell lines, with a selectivity index <1. No antibacterial activity was noticed against 52 strains at 100 µg/mL.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Lamiaceae/química , Aceites Volátiles/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación
20.
Plants (Basel) ; 10(6)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198660

RESUMEN

Ethylene is a plant hormone controlling physiological and developmental processes such as fruit maturation, hairy root formation, and leaf abscission. Its effect on regeneration systems, such as organogenesis and somatic embryogenesis (SE), has been studied, and progress in molecular biology techniques have contributed to unveiling the mechanisms behind its effects. The influence of ethylene on regeneration should not be overlooked. This compound affects regeneration differently, depending on the species, genotype, and explant. In some species, ethylene seems to revert recalcitrance in genotypes with low regeneration capacity. However, its effect is not additive, since in genotypes with high regeneration capacity this ability decreases in the presence of ethylene precursors, suggesting that regeneration is modulated by ethylene. Several lines of evidence have shown that the role of ethylene in regeneration is markedly connected to biotic and abiotic stresses as well as to hormonal-crosstalk, in particular with key regeneration hormones and growth regulators of the auxin and cytokinin families. Transcriptional factors of the ethylene response factor (ERF) family are regulated by ethylene and strongly connected to SE induction. Thus, an evident connection between ethylene, stress responses, and regeneration capacity is markedly established. In this review the effect of ethylene and the way it interacts with other players during organogenesis and somatic embryogenesis is discussed. Further studies on the regulation of ERF gene expression induced by ethylene during regeneration can contribute to new insights on the exact role of ethylene in these processes. A possible role in epigenetic modifications should be considered, since some ethylene signaling components are directly related to histone acetylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...