Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 466: 133652, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309158

RESUMEN

This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.


Asunto(s)
Foraminíferos , Sedimentos Geológicos , Éteres Difenilos Halogenados , Foraminíferos/genética , Biodiversidad , Reproducibilidad de los Resultados , Monitoreo del Ambiente/métodos
2.
Int J Comput Assist Radiol Surg ; 19(1): 27-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37501053

RESUMEN

PURPOSE: Electromagnetic tracking (EMT) accuracy is affected by the presence of surrounding metallic materials. In this work, we propose measuring the magnetic field's variation due to distortion at a witness position to localise the instrument causing distortion based on a pre-trained model and without additional sensors attached to it. METHODS: Two experiments were performed to demonstrate possible applications of the technique proposed. In the first case, the distortion introduced by an ultrasound (US) probe was characterised and subsequently used to track the probe position on a line. In the second application, the measurement was used to estimate the distance of an interventional fluoroscopy C-arm machine and apply the correct compensation model. RESULTS: Tracking of the US probe using the proposed method was demonstrated with millimetric accuracy. The distortion created by the C-arm caused errors in the order of centimetres, which were reduced to 1.52 mm RMS after compensation. CONCLUSIONS: The distortion profile associated with medical equipment was pre-characterised and used in applications such as object tracking and error compensation map selection. In the current study, the movement was limited to one degree of freedom (1 DOF) and simple analytical functions were used to model the magnetic distortion. Future work will explore advanced AI models to extend the method to 6 DOF tracking using multiple witness sensors.


Asunto(s)
Cirugía Asistida por Computador , Humanos , Cirugía Asistida por Computador/métodos , Fenómenos Electromagnéticos , Ultrasonografía , Fluoroscopía
3.
Int J Comput Assist Radiol Surg ; 18(9): 1707-1713, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37386335

RESUMEN

PURPOSE: Electromagnetic tracking (EMT) is beneficial in image-guided interventions to reduce the use of ionising radiation-based imaging techniques. Enabling wirelessly tracked sensors will increase the usability of these systems for catheter tracking and patient registration systems. This work introduces a novel method of wirelessly transmitting sensor data using a frequency modulation (FM) radio. METHODS: The proposed technique was tested using the open-source Anser EMT system. An electromagnetic sensor was connected in parallel to an FM transmitter prototype and wired directly to the Anser system for comparison. The performance of the FM transmitter was evaluated on a grid of 125 test points using an optical tracking system as a gold standard. RESULTS: An average position accuracy of 1.61 ± 0.68 mm and angular rotation accuracy of 0.04° for the FM transmitted sensor signal was obtained over a 30 cm × 30 cm × 30 cm volume, in comparison with the 1.14 ± 0.80 mm, 0.04° accuracy previously reported for the Anser system. The FM transmitted sensor signal had an average resolved position precision of 0.95 mm while the directly wired signal was found to have an average precision of 1.09 mm. A very low frequency (∼ 5 mHz) oscillation in the wirelessly transmitted signal was observed and compensated for by performing a dynamic scaling of the magnetic field model used for solving the sensor pose. CONCLUSIONS: We demonstrate that FM transmission of an electromagnetic sensor signal can be used to achieve similar tracking performance to a wired sensor. FM transmission for wireless EMT is a viable alternative to digital sampling and transmission over Bluetooth. Future work will create an integrated wireless sensor node using FM communication that is compatible with existing EMT systems.


Asunto(s)
Fenómenos Electromagnéticos , Cirugía Asistida por Computador , Humanos , Catéteres , Cirugía Asistida por Computador/métodos , Campos Magnéticos , Sistemas de Computación
4.
Environ Int ; 172: 107738, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36641836

RESUMEN

The Anthropocene is characterized by dramatic ecosystem changes driven by human activities. The impact of these activities can be assessed by different geochemical and paleontological proxies. However, each of these proxies provides only a fragmentary insight into the effects of anthropogenic impacts. It is highly challenging to reconstruct, with a holistic view, the state of the ecosystems from the preindustrial period to the present day, covering all biological components, from prokaryotes to multicellular eukaryotes. Here, we used sedimentary ancient DNA (sedaDNA) archives encompassing all trophic levels of biodiversity to reconstruct the two century-natural history in Bagnoli-Coroglio (Gulf of Pozzuoli, Tyrrhenian Sea), one of the most polluted marine-coastal sites in Europe. The site was characterized by seagrass meadows and high eukaryotic diversity until the beginning of the 20th century. Then, the ecosystem completely changed, with seagrasses and associated fauna as well as diverse groups of planktonic and benthic protists being replaced by low diversity biota dominated by dinophyceans and infaunal metazoan species. The sedaDNA analysis revealed a five-phase evolution of the area, where changes appear as the result of a multi-level cascade effect of impacts associated with industrial activities, urbanization, water circulation and land-use changes. The sedaDNA allowed to infer reference conditions that must be considered when restoration actions are to be implemented.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Animales , Biota , Europa (Continente) , Actividades Humanas , Sedimentos Geológicos
5.
Biology (Basel) ; 11(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-36101341

RESUMEN

The evaluation of the effects of pollution (e.g., Hg pollution) is a difficult task and relies mostly on biomonitoring based on bioindicators. The application of biomarkers may represent a complementary or alternative approach in environmental biomonitoring. Mercury is known to pose a significant health hazard due to its ability to cross cellular membranes, bioaccumulate, and biomagnify. In the present research, the effects of short-term (i.e., 24 h) Hg exposure in the symbiont-bearing benthic foraminiferal species Amphistegina lessonii are evaluated using several biomarkers (i.e., proteins and enzymes). Mercury leads to significant changes in the biochemistry of cells. Its effects are mainly associated with oxidative stress (i.e., production of reactive oxygen species: ROS), depletion of glutathione (GSH), and alteration of protein synthesis. Specifically, our findings reveal that exposure to Hg leads to the consumption of GSH by GPx and GST for the scavenging of ROS and the activation of antioxidant-related enzymes, including SOD and GSH-enzymes (GST, GSR, GPx, and Se-GPx), that are directly related to a defense mechanism against ROS. The Hg exposure also activates the MAPK (e.g., p-p38) and HSP (e.g., HSP 70) pathways. The observed biochemical alterations associated with Hg exposure may represent effective and reliable proxies (i.e., biomarkers) for the evaluation of stress in A. lessonii and lead to a possible application for the detection of early warning signs of environmental stress in biomonitoring.

6.
Int J Comput Assist Radiol Surg ; 17(9): 1717-1721, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35599296

RESUMEN

PURPOSE: Hybrid navigation is a promising technique which combines the benefits of optical or electromagnetic tracking (EMT) and fluoroscopy imaging. Unfortunately, the fluoroscopy system is a source of metallic distortion for the EMT system. In this work, we present a new method for intraoperative calibration and real-time compensation of dynamic field distortions. The method was tested in the presence of a fluoroscopy C-arm, and sub-millimetre errors were obtained after distortion correction. METHODS: A hybrid navigation scenario was created by combining the open-source electromagnetic tracking system Anser EMT and a commercial fluoroscopy C-arm. The electromagnetic field generator was placed directly on top of the X-ray collimator, which introduced significant field distortion. Magnetic sensors were placed at known positions to capture the magnetic distortion, and virtual magnetic dipole sources were used to model the distortion magnetic field. The accuracy of the compensated EMT model was tested on a grid of test points. RESULTS: Error reduction was demonstrated from 12.01 to 0.35 mm and from 25.03 to 0.49 mm, for horizontal and vertical sensor orientations, respectively, over a volume of 16 × 16 × 6 cm. It is proposed that such sub-millimetre tracking errors meet the needs of most endoscopic navigation tasks. CONCLUSIONS: We describe a method to model a magnetic field in real time, based on redundant electromagnetic field measurements, and we apply it to compensate for the distortion introduced by a fluoroscopy C-arm. The main limitation of the approach is the requirement for a high number of sensors, with possible occlusion of the operative space. Solutions might come from miniaturisation and wireless sensing.


Asunto(s)
Fenómenos Electromagnéticos , Cirugía Asistida por Computador , Calibración , Campos Electromagnéticos , Fluoroscopía , Humanos , Cirugía Asistida por Computador/métodos
7.
Sensors (Basel) ; 21(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923811

RESUMEN

Electromagnetic tracking is a safe, reliable, and cost-effective method to track medical instruments in image-guided surgical navigation. However, patient motion and magnetic field distortions heavily impact the accuracy of tracked position and orientation. The use of redundant magnetic sensors can help to map and mitigate for patient movements and magnetic field distortions within the tracking region. We propose a planar inductive sensor design, printed on PCB and embedded into medical patches. The main advantage is the high repeatability and the cost benefit of using mass PCB manufacturing processes. The article presents new operative formulas for electromagnetic tracking of planar coils on the centimetre scale. The full magnetic analytical model is based on the mutual inductance between coils which can be approximated as being composed by straight conductive filaments. The full model is used to perform accurate system simulations and to assess the accuracy of faster simplified magnetic models, which are necessary to achieve real-time tracking in medical applications.


Asunto(s)
Fenómenos Electromagnéticos , Cirugía Asistida por Computador , Humanos , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...