Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Clin Invest ; 134(14)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833312

RESUMEN

BACKGROUNDPredicting immune effector cell-associated neurotoxicity syndrome (ICANS) in patients infused with CAR T cells is still a conundrum. This complication, thought to be consequent to CAR T cell activation, arises a few days after infusion, when circulating CAR T cells are scarce and specific CAR T cell-derived biomarkers are lacking.METHODSCAR+ extracellular vesicle (CAR+EV) release was assessed in human CD19.CAR T cells cocultured with CD19+ target cells. A prospective cohort of 100 patients with B cell lymphoma infused with approved CD19.CAR T cell products was assessed for plasma CAR+EVs as biomarkers of in vivo CD19.CAR T cell activation. Human induced pluripotent stem cell-derived (iPSC-derived) neural cells were used as a model for CAR+EV-induced neurotoxicity.RESULTSIn vitro release of CAR+EVs occurs within 1 hour after target engagement. Plasma CAR+EVs are detectable 1 hour after infusion. A concentration greater than 132.8 CAR+EVs/µL at hour +1 or greater than 224.5 CAR+EVs/µL at day +1 predicted ICANS in advance of 4 days, with a sensitivity and a specificity outperforming other ICANS predictors. ENO2+ nanoparticles were released by iPSC-derived neural cells upon CAR+EV exposure and were increased in plasma of patients with ICANS.CONCLUSIONPlasma CAR+EVs are an immediate signal of CD19.CAR T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis.TRIAL REGISTRATIONNCT04892433, NCT05807789.FUNDINGLife Science Hub-Advanced Therapies (financed by Health Ministry as part of the National Plan for Complementary Investments to the National Recovery and Resilience Plan [NRRP]: E.3 Innovative health ecosystem for APC fees and immunomonitoring).


Asunto(s)
Antígenos CD19 , Vesículas Extracelulares , Inmunoterapia Adoptiva , Linfoma de Células B , Humanos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Antígenos CD19/inmunología , Linfoma de Células B/inmunología , Linfoma de Células B/terapia , Linfoma de Células B/sangre , Adulto , Anciano , Receptores Quiméricos de Antígenos/inmunología , Estudios Prospectivos
2.
Materials (Basel) ; 17(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38793481

RESUMEN

In the development of bone graft substitutes, a fundamental step is the use of scaffolds with adequate composition and architecture capable of providing support in regenerative processes both on the tissue scale, where adequate resistance to mechanical stress is required, as well as at the cellular level where compliant chemical-physical and mechanical properties can promote cellular activity. In this study, based on a previous optimization study of this group, the potential of a three-dimensional construct based on polycaprolactone (PCL) and a novel biocompatible Mg- and Sr-containing glass named BGMS10 was explored. Fourier-transform infrared spectroscopy and scanning electron microscopy showed the inclusion of BGMS10 in the scaffold structure. Mesenchymal stem cells cultured on both PCL and PCL-BGMS10 showed similar tendencies in terms of osteogenic differentiation; however, no significant differences were found between the two scaffold types. This circumstance can be explained via X-ray microtomography and atomic force microscopy analyses, which correlated the spatial distribution of the BGMS10 within the bulk with the elastic properties and topography at the cell scale. In conclusion, our study highlights the importance of multidisciplinary approaches to understand the relationship between design parameters, material properties, and cellular response in polymer composites, which is crucial for the development and design of scaffolds for bone regeneration.

3.
Bioengineering (Basel) ; 10(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37892912

RESUMEN

Articular cartilage lacks intrinsic regenerative capabilities, and the current treatments fail to regenerate damaged tissue and lead only to temporary pain relief. These limitations have prompted the development of tissue engineering approaches, including 3D culture systems. Thanks to their regenerative properties and capacity to recapitulate embryonic processes, spheroids obtained from mesenchymal stromal cells are increasingly studied as building blocks to obtain functional tissues. The aim of this study was to investigate the capacity of adipose stromal cells to assemble in spheroids and differentiate toward chondrogenic lineage from the perspective of cartilage repair. Spheroids were generated by two different methods (3D chips vs. Ultra-Low Attachment plates), differentiated towards chondrogenic lineage, and their properties were investigated using molecular biology analyses, biophysical measurement of mass density, weight, and size of spheroids, and confocal imaging. Overall, spheroids showed the ability to differentiate by expressing specific cartilaginous markers that correlate with their mass density, defining a critical point at which they start to mature. Considering the spheroid generation method, this pilot study suggested that spheroids obtained with chips are a promising tool for the generation of cartilage organoids that could be used for preclinical/clinical approaches, including personalized therapy.

4.
Commun Biol ; 6(1): 1044, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838732

RESUMEN

Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility.


Asunto(s)
Citoesqueleto de Actina , Actinas , Núcleo Celular , Movimiento Celular/fisiología , Citosol
5.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569775

RESUMEN

Adipose tissue-derived cell-based injectable therapies have been demonstrated to have disease-modifying effects on joint tissues in preclinical studies on animal osteoarthritis (OA) models, but clinical results are heterogeneous and not always satisfactory. The aim of this study was to investigate the influence of adipose tissue properties on the therapeutic effects of the adipose-derived product in an in vitro OA setting. Micro-fragmented adipose tissue (MF-AT) samples were obtained from 21 OA patients (mean age 51.7 ± 11.8 years, mean BMI 25.7 ± 4.1 kg/m2). The analysis of the MF-AT supernatant was performed to analyze the release of inflammatory factors. The effects of MF-AT inflammatory factors were investigated on chondrocytes and synoviocytes gene expression levels. Patients' characteristics were analyzed to explore their influence on MF-AT inflammatory molecules and on the MF-AT effects on the gene expression of chondrocytes and synoviocytes. The study results demonstrated that adipose tissue-derived products may present inflammatory properties that influence the therapeutic potential for OA treatment, with products with a higher pro-inflammatory profile stimulating a higher expression of genes related to a more inflamed and catabolic phenotype. A higher pro-inflammatory cytokine pattern and a higher pro-inflammatory effect were found in adipose tissue-derived products obtained from OA patients with higher BMI.


Asunto(s)
Osteoartritis de la Rodilla , Sinoviocitos , Animales , Osteoartritis de la Rodilla/metabolismo , Sinoviocitos/metabolismo , Condrocitos/metabolismo , Células Cultivadas , Tejido Adiposo/metabolismo
6.
Knee Surg Sports Traumatol Arthrosc ; 31(6): 2140-2151, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36156111

RESUMEN

PURPOSE: To compare the number and properties of bone marrow stromal cells (BMSCs) collected from bone marrow aspirate concentrate (BMAC) obtained from different harvest sites and from patients of different ages. METHODS: BMAC was obtained from two groups of patients based on age (n = 10 per group): 19.0 ± 2.7 years for the younger and 56.8 ± 12.5 for the older group. In the latter, BMAC was obtained from both iliac crest and proximal tibia for a donor-matched analysis. Mononucleated cell count and CFU-F assay were performed, together with phenotype characterization of BMSCs from iliac crest and proximal tibia, the study of chondrogenic and osteogenic differentiation capacity, histological staining and spectrophotometric quantification, and the analysis of mRNAs expression. RESULTS: Cells derived from iliac crest and proximal tibia showed the same phenotypic pattern at flow cytometry, as well as similar chondrogenic and osteogenic potential. However, a significantly higher number of mononuclear cells per ml was observed in younger patients (3.8 ± 1.8 × 107) compared to older patients (1.2 ± 0.8 × 107) (p < 0.0005). The latter yield, obtained from the iliac crest, was significantly higher than resulting from the BMAC harvested from the proximal tibia in the same group of patients (0.3 ± 0.2 × 107, p < 0.0005). This result was confirmed by the CFU-F analysis at day 10 (15.9 ± 19.4 vs 0.6 ± 1.0, p = 0.001) and day-20 (21.7 ± 23.0 vs 2.9 ± 4.2, p = 0.006). CONCLUSION: Harvest site and age can affect the quality of BMAC. BMSCs obtained from iliac crest and proximal tibia present comparable mesenchymal markers expression as well as osteogenic and chondrogenic differentiation potential, but iliac crest BMAC presents a four times higher number of mononucleated cells with significantly higher clonogenic capacity compared to the tibia. BMAC of younger patients also had a three-time higher number of mononucleated cells. The identification of BMAC characteristics could help to optimize its preparation and to identify the most suitable indications for this orthobiologic treatment in the clinical practice.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Osteogénesis , Células Madre/metabolismo , Diferenciación Celular
7.
BMJ Open ; 12(9): e062632, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36468635

RESUMEN

INTRODUCTION: Subchondral and intra-articular injections of bone marrow aspirate concentrate (BMAC) showed promising results for knee osteoarthritis (OA) patients. To date, there is no evidence to demonstrate whether the combination of these treatments provides higher benefits than the intra-articular injection alone. METHODS AND ANALYSIS: Eighty-six patients with symptomatic knee OA (aged between 40 and 70 years) are randomised to BMAC intra-articular injection combined with subchondral BMAC injection or BMAC intra-articular injection alone in a ratio of 1:1. The primary outcome is the total Western Ontario and McMaster Universities Osteoarthritis Index, the secondary outcomes are the International Knee Documentation Committee Subjective and Objective Knee Evaluation Form, the Tegner activity scale, the EuroQol-Visual Analogue Scale, and the health questionnaire European Quality of Life Five Dimension score. Additional CT and MRI evaluations are performed at the baseline assessment and at the final 12-month follow-up. The hypothesis is that the combined injections provide higher knee pain and function improvement compared with BMAC intra-articular injection alone. The primary analysis follows an intention to treat principle. ETHICS AND DISSEMINATION: The study protocol has been approved by the Emilia Wide Area Ethical Committee of the Emilia-Romagna Region (CE-AVEC), Bologna, Italy. Written informed consent is obtained from all the participants. Findings of this study will be disseminated through peer-reviewed publications and conference presentations. PROTOCOL VERSION: Version 1 (14 May 2018). TRIAL REGISTRATION NUMBER: NCT03876795.


Asunto(s)
Osteoartritis de la Rodilla , Adulto , Anciano , Humanos , Persona de Mediana Edad , Médula Ósea , Inyecciones Intraarticulares , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/tratamiento farmacológico , Estudios Prospectivos , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Método Doble Ciego
8.
Stem Cells Int ; 2022: 9376338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898656

RESUMEN

The last decade has seen exponentially growing efforts to exploit the effects of adipose derived stromal cells (ADSC) in the treatment of a wide range of chronic degenerative diseases, including osteoarthritis (OA), the most prevalent joint disorder. In the perspective of developing a cell-free advanced therapy medicinal product, a focus has been recently addressed to the ADSC secretome that lends itself to an allogeneic use and can be further dissected for the selective purification of small extracellular vesicles (sEVs). sEVs can act as "biological drug carriers" to transfer information that mirror the pathophysiology of the providing cells. This is important in the clinical perspective where many OA patients are also affected by the metabolic syndrome (MetS). ADSC from MetS OA patients are dysfunctional and "inflammatory" primed within the adipose tissue. To mimic this condition, we exposed ADSC to IL-1ß, and then we investigated the effects of the isolated sEVs on chondrocytes and synoviocytes, either cultured separately or in co-culture, to tease out the effects of these "IL-1ß primed sEVs" on gene and protein expression of major inflammatory and catabolic OA markers. In comparison with sEVs isolated from unstimulated ADSC, the IL-1ß primed sEVs were able to propagate NF-κB activation in bystander joint cells. The effects were more prominent on synoviocytes, possibly because of a higher expression of binding molecules such as CD44. These findings call upon a careful characterization of the "inflammatory fingerprint" of ADSC to avoid the transfer of an unwanted message as well as the development of in vitro "preconditioning" strategies able to rescue the antiinflammatory/anticatabolic potential of ADSC-derived sEVs.

9.
J Exp Clin Cancer Res ; 41(1): 113, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351152

RESUMEN

BACKGROUND: In the last years, several efforts have been made to classify colorectal cancer (CRC) into well-defined molecular subgroups, representing the intrinsic inter-patient heterogeneity, known as Consensus Molecular Subtypes (CMSs). METHODS: In this work, we performed a meta-analysis of CRC patients stratified into four CMSs. We identified a negative correlation between a high level of anaplastic lymphoma kinase (ALK) expression and relapse-free survival, exclusively in CMS1 subtype. Stemming from this observation, we tested cell lines, patient-derived organoids and mice with potent ALK inhibitors, already approved for clinical use. RESULTS: ALK interception strongly inhibits cell proliferation already at nanomolar doses, specifically in CMS1 cell lines, while no effect was found in CMS2/3/4 groups. Furthermore, in vivo imaging identified a role for ALK in the dynamic formation of 3D tumor spheroids. Consistently, ALK appeares constitutively phosphorylated in CMS1, and it signals mainly through the AKT axis. Mechanistically, we found that CMS1 cells display several copies of ALKAL2 ligand and ALK-mRNAs, suggesting an autocrine loop mediated by ALKAL2 in the activation of ALK pathway, responsible for the invasive phenotype. Consequently, disruption of ALK axis mediates the pro-apoptotic action of CMS1 cell lines, both in 2D and 3D and enhanced cell-cell adhesion and e-cadherin organization. In agreement with all these findings, the ALK signature encompassing 65 genes statistically associated with worse relapse-free survival in CMS1 subtype. Finally, as a proof of concept, the efficacy of ALK inhibition was demonstrated in both patient-derived organoids and in tumor xenografts in vivo. CONCLUSIONS: Collectively, these findings suggest that ALK targeting may represent an attractive therapy for CRC, and CMS classification may provide a useful tool to identify patients who could benefit from this treatment. These findings offer rationale and pharmacological strategies for the treatment of CMS1 CRC.


Asunto(s)
Quinasa de Linfoma Anaplásico , Neoplasias del Colon , Citocinas , Quinasa de Linfoma Anaplásico/genética , Animales , Neoplasias del Colon/genética , Citocinas/genética , Humanos , Ligandos , Ratones , Recurrencia Local de Neoplasia
10.
Bioengineering (Basel) ; 9(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35200403

RESUMEN

Mesenchymal stem cells (MSC) make up less than 1% of the bone marrow (BM). Several methods are used for their isolation such as gradient separation or centrifugation, but these methodologies are not direct and, thus, plastic adherence outgrowth or magnetic/fluorescent-activated sorting is required. To overcome this limitation, we investigated the use of a new separative technology to isolate MSCs from BM; it label-free separates cells based solely on their physical characteristics, preserving their native physical properties, and allows real-time visualization of cells. BM obtained from patients operated for osteochondral defects was directly concentrated in the operatory room and then analyzed using the new technology. Based on cell live-imaging and the sample profile, it was possible to highlight three fractions (F1, F2, F3), and the collected cells were evaluated in terms of their morphology, phenotype, CFU-F, and differentiation potential. Multipotent MSCs were found in F1: higher CFU-F activity and differentiation potential towards mesenchymal lineages compared to the other fractions. In addition, the technology depletes dead cells, removing unwanted red blood cells and non-progenitor stromal cells from the biological sample. This new technology provides an effective method to separate MSCs from fresh BM, maintaining their native characteristics and avoiding cell manipulation. This allows selective cell identification with a potential impact on regenerative medicine approaches in the orthopedic field and clinical applications.

11.
Knee Surg Sports Traumatol Arthrosc ; 30(3): 773-781, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33464397

RESUMEN

PURPOSE: The aim of this study was to compare three procedures to exploit adipose-derived cells for the treatment of osteoarthritis (OA) in a preclinical model, to understand their therapeutic potential and identify the most suitable approach for the clinical application. METHODS: Biological samples from adipose tissue, processed by mechanical micro-fragmentation (MF), enzymatic digestion (SVF) or cell expansion (ADSCs), were first characterized in vitro and then used in vivo in a surgically induced OA rabbit model: Group 1-control group (untreated 12 knees/saline 12 knees), Group 2-MF (24 knees), Group 3-SVF (24 knees), Group 4-ADSCs (24 knees). Macroscopic, histological, histomorphometric, immunohistochemical and blood and synovial fluid analyses were evaluated at 2 and 4 months from the treatments. RESULTS: Samples obtained by the three procedures yielded 85-95% of viable cells. In vivo assessments showed no significant side effects or inflammatory responses after the injection. The macroscopic Hanashi score did not show significant differences among treated groups and controls. The histopathological evaluation of synovial tissues showed lower signs of synovitis for MF, although the semiquantitative analysis (Krenn score) did not reach statistical significance. Instead, MF showed the best results both in terms of qualitative and semi-quantitative evaluations of articular cartilage, with a more uniform staining, a smoother surface and a significantly better Laverty score (p = 0.004). CONCLUSION: MF, SVF, and expanded ADSCs did not elicit significant local or systemic adverse reactions in this preclinical OA model. Among the different methods used to exploit the adipose tissue potential, MF showed the most promising findings in particular in terms of protection of the articular surface from the joint degenerative OA processes. LEVEL OF EVIDENCE: Preclinical animal study.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Tejido Adiposo , Animales , Cartílago Articular/cirugía , Digestión , Inyecciones Intraarticulares/métodos , Osteoartritis de la Rodilla/terapia , Conejos
12.
Polymers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771382

RESUMEN

Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.

13.
PLoS One ; 16(6): e0252907, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34101765

RESUMEN

Three-dimensional (3D) culture systems like tumor spheroids represent useful in vitro models for drug screening and more broadly for cancer biology research, but the generation of uniform populations of spheroids remains challenging. The possibility to properly characterize spheroid properties would increase the reliability of these models. To address this issue different analysis were combined: i) a new device and relative analytical method for the accurate, simultaneous, and rapid measurement of mass density, weight, and size of spheroids, ii) confocal imaging, and iii) protein quantification, in a clinically relevant 3D model. The LoVo colon cancer cell line forming spheroids, treated with crizotinib (CZB) an ATP-competitive small-molecule inhibitor of the receptor tyrosine kinases, was employed to study and assess the correlation between biophysical and morphological parameters in both live and fixed cells. The new fluidic-based measurements allowed a robust phenotypical characterization of the spheroids structure, offering insights on the spheroids bulk and an accurate measurement of the tumor density. This analysis helps overcome the technical limits of the imaging that hardly penetrates the thickness of 3D structures. Accordingly, we were able to document that CZB treatment has an impact on mass density, which represents a key marker characterizing cancer cell treatment. Spheroid culture is the ultimate technology in drug discovery and the adoption of such precise measurement of the tumor characteristics can represent a key step forward for the accurate testing of treatment's potential in 3D in vitro models.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Cultivo de Célula/métodos , Neoplasias del Colon/patología , Crizotinib/farmacología , Esferoides Celulares/patología , Supervivencia Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Humanos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
14.
Biology (Basel) ; 10(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064398

RESUMEN

Polycaprolactone (PCL) is widely used in additive manufacturing for the construction of scaffolds for tissue engineering because of its good bioresorbability, biocompatibility, and processability. Nevertheless, its use is limited by its inadequate mechanical support, slow degradation rate and the lack of bioactivity and ability to induce cell adhesion and, thus, bone tissue regeneration. In this study, we fabricated 3D PCL scaffolds reinforced with a novel Mg-doped bioactive glass (Mg-BG) characterized by good mechanical properties and biological reactivity. An optimization of the printing parameters and scaffold fabrication was performed; furthermore, an extensive microtopography characterization by scanning electron microscopy and atomic force microscopy was carried out. Nano-indentation tests accounted for the mechanical properties of the scaffolds, whereas SBF tests and cytotoxicity tests using human bone-marrow-derived mesenchymal stem cells (BM-MSCs) were performed to evaluate the bioactivity and in vitro viability. Our results showed that a 50/50 wt% of the polymer-to-glass ratio provides scaffolds with a dense and homogeneous distribution of Mg-BG particles at the surface and roughness twice that of pure PCL scaffolds. Compared to pure PCL (hardness H = 35 ± 2 MPa and Young's elastic modulus E = 0.80 ± 0.05 GPa), the 50/50 wt% formulation showed H = 52 ± 11 MPa and E = 2.0 ± 0.2 GPa, hence, it was close to those of trabecular bone. The high level of biocompatibility, bioactivity, and cell adhesion encourages the use of the composite PCL/Mg-BG scaffolds in promoting cell viability and supporting mechanical loading in the host trabecular bone.

15.
J Exp Clin Cancer Res ; 40(1): 89, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33673859

RESUMEN

BACKGROUND: Recent developments in abscopal effect strongly support the use of radiotherapy for the treatment of metastatic disease. However, deeper understanding of the molecular mechanisms underlying the abscopal effect are required to best benefit a larger proportion of patients with metastasis. Several groups including ours, reported the involvement of wild-type (wt) p53 in radiation-induced abscopal effects, however very little is known on the role of wtp53 dependent molecular mechanisms. METHODS: We investigated through in vivo and in vitro approaches how wtp53 orchestrates radiation-induced abscopal effects. Wtp53 bearing (A549) and p53-null (H1299) NSCLC lines were xenotransplanted in nude mice, and cultured in 2D monolayers and 3D tumor spheroids. Extracellular vesicles (EVs) were isolated from medium cell culture by ultracentrifugation protocol followed by Nanoparticle Tracking Analysis. Gene expression was evaluated by RT-Real Time, digital qRT-PCR, and dot blot technique. Protein levels were determined by immunohistochemistry, confocal anlysis, western blot techniques, and immunoassay. RESULTS: We demonstrated that single high-dose irradiation (20 Gy) induces significant tumor growth inhibition in contralateral non-irradiated (NIR) A549 xenograft tumors but not in NIR p53-null H1299 or p53-silenced A549 (A549sh/p53) xenografts. We further demonstrates that irradiation of A549 cells in vitro induces a senescence-associated secretory phenotype (SASP) producing extracellular vesicles (EVs) expressing CD63 and carrying DNA:RNA hybrids and LINE-1 retrotransposon. IR-A549 EVs also hamper the colony-forming capability of recipient NIR A549 cells, induce senescent phenotype, nuclear expression of DNA:RNA hybrids, and M1 macrophage polarization. CONCLUSIONS: In our models, we demonstrate that high radiation dose in wtp53 tumors induce the onset of SASP and secretion of CD63+ EVs loaded with DNA:RNA hybrids and LINE-1 retrotransposons that convey senescence messages out of the irradiation field triggering abscopal effect in NIR tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Femenino , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Células RAW 264.7
16.
Sci Rep ; 11(1): 1053, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441764

RESUMEN

The therapeutic ability of Mesenchymal Stem/Stromal Cells to address osteoarthritis (OA) is mainly related to the secretion of biologically active factors, which can be found within their secreted Extracellular Vesicles including small Extracellular Vesicles (sEV). Aim of this study was to investigate the effects of sEV from adipose derived stromal cells (ADSC) on both chondrocytes and synoviocytes, in order to gain insights into the mechanisms modulating the inflammatory/catabolic OA environment. sEV, obtained by a combined precipitation and size exclusion chromatography method, were quantified and characterized, and administered to chondrocytes and synoviocytes stimulated with IL-1ß. Cellular uptake of sEV was evaluated from 1 to 12 h. Gene expression and protein release of cytokines/chemokines, catabolic and inflammatory molecules were analyzed at 4 and 15 h, when p65 nuclear translocation was investigated to study NF-κB pathway. This study underlined the potential of ADSC derived sEV to affect gene expression and protein release of both chondrocytes and synoviocytes, counteracting IL-1ß induced inflammatory effects, and provided insights into their mechanisms of action. sEV uptake was faster in synoviocytes, where it also elicited stronger effects, especially in terms of cytokine and chemokine modulation. The inflammatory/catabolic environment mediated by NF-κB pathway was significantly attenuated by sEV, which hold promise as new therapeutic strategy to address OA.


Asunto(s)
Vesículas Extracelulares/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , FN-kappa B/metabolismo , Osteoartritis/terapia , Anciano , Western Blotting , Condrocitos/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Inflamación/terapia , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/ultraestructura , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Osteoartritis/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sinoviocitos/metabolismo
17.
Int Orthop ; 45(2): 525-538, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32661635

RESUMEN

PURPOSE: To investigate the available literature on the use of bone marrow aspirate concentrate (BMAC) and summarize the current evidence supporting its potential for the injective treatment of joints affected by osteoarthritis (OA). METHODS: A systematic literature search was conducted on three electronic databases (PubMed, Embase, and Cochrane Library) in April 2020, using the following string: "((bone marrow concentrate) OR (BMC) OR (bone marrow aspirate concentrate) OR (BMAC)) AND (osteoarthritis)", and inclusion criteria: clinical and preclinical (animal) studies of any level of evidence, written in English language, and evaluating the intra-articular or subchondral use of BMAC for the injective treatment of OA joints. RESULTS: The publication trend remarkably increased over time. A total of 22 studies were included in the qualitative data synthesis: four preclinical studies and 18 clinical studies, for a total number of 4626 patients. Safety was documented by all studies, with a low number of adverse events. An overall improvement in pain and function was documented in most of the studies, but the clinical studies present significant heterogeneity, few patients, short-term follow-up, and overall poor methodology. CONCLUSION: There is a growing interest in the field of BMAC injections for the treatment of OA, with promising results in preclinical and clinical studies in terms of safety and effectiveness. Nevertheless, the current knowledge is still preliminary. Preclinical research is still needed to optimize BMAC use, as well as high-level large controlled trials to better understand the real potential of BMAC injections for the treatment of patients affected by OA.


Asunto(s)
Médula Ósea , Osteoartritis de la Rodilla , Animales , Trasplante de Médula Ósea , Humanos , Resultado del Tratamiento
18.
Micromachines (Basel) ; 11(5)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354148

RESUMEN

Gathering precise information on mass density, size and weight of cells or cell aggregates, is crucial for applications in many biomedical fields with a specific focus on cancer research. Although few technical solutions have been presented for single-cell analysis, literature does not cover this aspect for 3D models such as spheroids. Since the research interest on such samples is notably rising, here we describe a flow-apparatus, and the associated physical method and operative protocol for the accurate measurements of mass density, size and weight. The technique is based on the detection of the terminal velocity of a free-falling sample into a specifically conceived analysis flow-channel. Moreover, in order to demonstrate the accuracy and precision of the presented flow-device, analyses were initially carried out on standardized polystyrene beads. Finally, to display the application of the proposed system for biological samples, mass density, size and weight of live SW620 tumor spheroids were analyzed. The combined measurements of such parameters can represent a step toward a deeper understanding of 3D culture models.

19.
Cells ; 8(11)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652798

RESUMEN

There has been considerable advancement over the last few years in the treatment of osteoarthritis, common chronic disease and a major cause of disability in older adults. In this pathology, the entire joint is involved and the regeneration of articular cartilage still remains one of the main challenges, particularly in an actively inflammatory environment. The recent strategies for osteoarthritis treatment are based on the use of different therapeutic solutions such as cell and gene therapies and tissue engineering. In this review, we provide an overview of current regenerative strategies highlighting the pros and cons, challenges and opportunities, and we try to identify areas where future work should be focused in order to advance this field.


Asunto(s)
Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Osteoartritis/terapia , Animales , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Terapia Genética/métodos , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Regeneración/fisiología , Ingeniería de Tejidos/métodos
20.
Materials (Basel) ; 11(9)2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30227656

RESUMEN

Cartilage lesions fail to heal spontaneously, leading to the development of chronic conditions which worsen the life quality of patients. Three-dimensional scaffold-based bioprinting holds the potential of tissue regeneration through the creation of organized, living constructs via a "layer-by-layer" deposition of small units of biomaterials and cells. This technique displays important advantages to mimic natural cartilage over traditional methods by allowing a fine control of cell distribution, and the modulation of mechanical and chemical properties. This opens up a number of new perspectives including personalized medicine through the development of complex structures (the osteochondral compartment), different types of cartilage (hyaline, fibrous), and constructs according to a specific patient's needs. However, the choice of the ideal combination of biomaterials and cells for cartilage bioprinting is still a challenge. Stem cells may improve material mimicry ability thanks to their unique properties: the immune-privileged status and the paracrine activity. Here, we review the recent advances in cartilage three-dimensional, scaffold-based bioprinting using stem cells and identify future developments for clinical translation. Database search terms used to write this review were: "articular cartilage", "menisci", "3D bioprinting", "bioinks", "stem cells", and "cartilage tissue engineering".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...