Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 17(11): 4286-4301, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32815731

RESUMEN

Two of the main questions regarding cocrystal selection and formulation development are whether the will be stable and how fast can it dissolve the drug dose. Dissolving the drug dose may require cocrystals with a high solubility advantage over drug (SA = SCC/SD), but these may have limited potential to sustain drug supersaturation. Thus, we propose a twofold approach to mitigate the risk of drug precipitation by optimizing thermodynamic (SA) and kinetic factors (nucleation inhibitors). This risk can be evaluated by considering the cocrystal SA and drug dose/solubility ratio (D0D = Cdose/SD), which in tandem represent the maximum theoretical supersaturation that a cocrystal may generate, the driving force for drug precipitation, and the potential for dose-/solubility-limited absorption. cocrystals with SA and D0D values above critical supersaturation are prone to rapid precipitation, often negating their utility as a solubility enhancement tool. This work presents a mechanistic approach to controlling the dissolution-supersaturation-precipitation behavior of cocrystal systems, whereby relationships between SA, D0D, and the drug-solubilizing power of surfactants (SPD = SD,T/SD,aq) are used to fine-tune cocrystal-inherent supersaturation by rational additive selection. Experimental results with danazol-vanillin cocrystal demonstrate how SA, D0D, and SPD are key thermodynamic parameters to understanding the kinetic cocrystal behavior and how the risks of cocrystal development may be mitigated through the mechanistic formulation design.


Asunto(s)
Benzaldehídos/química , Precipitación Química/efectos de los fármacos , Danazol/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Tensoactivos/química , Benzaldehídos/farmacología , Cristalización , Liberación de Fármacos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Cinética , Solubilidad/efectos de los fármacos , Tensoactivos/farmacología , Temperatura
2.
Mol Pharm ; 16(9): 3887-3895, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31318567

RESUMEN

Cocrystals are often more soluble than needed and pose unnecessary risks for precipitation of less soluble forms of the drug during processing and dissolution. Such conversions lead to erratic cocrystal behavior and nullify the cocrystal solubility advantage over parent drug (SA = Scocrystal/Sdrug). This work demonstrates a quantitative method for additive selection to control cocrystal disproportionation based on cocrystal solubility advantage (SA) diagrams. The tunability of cocrystal SA is dependent on the selective drug-solubilizing power of surfactants (SPdrug = (ST/Saq)drug). This cocrystal property is used to generate SA-SP diagrams that facilitate surfactant selection and provide a framework for evaluating how SA influences drug concentration-time profiles associated with cocrystal dissolution, drug supersaturation, and precipitation (DSP). Experimental results with indomethacin-saccharin cocrystal and surfactants (sodium lauryl sulfate, Brij, and Myrj) demonstrate the log-linear relationship characteristic of SA-SP diagrams and the dependence of σmax and dissolution area under the curve (AUC) on SA with characteristic maxima at a threshold supersaturation where drug nucleation occurs. This approach is expected to streamline cocrystal formulation as it facilitates additive selection by considering the interplay between thermodynamic (SA) and kinetic (DSP) processes.


Asunto(s)
Precipitación Química , Liberación de Fármacos , Indometacina/química , Aceites de Plantas/química , Polietilenglicoles/química , Sacarina/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Área Bajo la Curva , Cristalización , Concentración de Iones de Hidrógeno , Cinética , Concentración Osmolar , Solubilidad , Temperatura
3.
Mol Pharm ; 15(12): 5454-5467, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30372084

RESUMEN

The goal of this project was to explore and to statistically evaluate the responsible gastrointestinal (GI) factors that are significant factors in explaining the systemic exposure of ibuprofen, between and within human subjects. In a previous study, we determined the solution and total concentrations of ibuprofen as a function of time in aspirated GI fluids, after oral administration of an 800 mg IR tablet (reference standard) of ibuprofen to 20 healthy volunteers in fasted state conditions. In addition, we determined luminal pH and motility pressure recordings that were simultaneously monitored along the GI tract. Blood samples were taken to determine ibuprofen plasma levels. In this work, an in-depth statistical and pharmacokinetic analysis was performed to explain which underlying GI variables are determining the systemic concentrations of ibuprofen between (inter-) and within (intra-) subjects. In addition, the obtained plasma profiles were deconvoluted to link the fraction absorbed with the fraction dissolved. Multiple linear regressions were performed to explain and quantitatively express the impact of underlying GI physiology on systemic exposure of the drug (in terms of plasma Cmax/AUC and plasma Tmax). The exploratory analysis of the correlation between plasma Cmax/AUC and the time to the first phase III contractions postdose (TMMC-III) explains ∼40% of the variability in plasma Cmax for all fasted state subjects. We have experimentally shown that the in vivo intestinal dissolution of ibuprofen is dependent upon physiological variables like, in this case, pH and postdose phase III contractions. For the first time, this work presents a thorough statistical analysis explaining how the GI behavior of an ionized drug can explain the systemic exposure of the drug based on the individual profiles of participating subjects. This creates a scientifically based and rational framework that emphasizes the importance of including pH and motility in a predictive in vivo dissolution methodology to forecast the in vivo performance of a drug product. Moreover, as no extensive first-pass metabolism is considered for ibuprofen, this study demonstrates how intraluminal drug behavior is reflecting the systemic exposure of a drug.


Asunto(s)
Liberación de Fármacos , Ayuno/fisiología , Absorción Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiología , Ibuprofeno/farmacocinética , Administración Oral , Adulto , Área Bajo la Curva , Disponibilidad Biológica , Variación Biológica Individual , Variación Biológica Poblacional/fisiología , Conjuntos de Datos como Asunto , Femenino , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Ibuprofeno/administración & dosificación , Masculino , Persona de Mediana Edad , Modelos Biológicos , Solubilidad , Comprimidos , Adulto Joven
4.
Eur J Pharm Sci ; 115: 258-269, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29378253

RESUMEN

Supersaturating drug delivery systems (SDDS) have been put forward in the recent decades in order to circumvent the issue of low aqueous solubility. Prior to the start of clinical trials, these enabling formulations should be adequately explored in in vitro/in silico studies in order to understand their in vivo performance and to select the most appropriate and effective formulation in terms of oral bioavailability and therapeutic outcome. The purpose of this work was to evaluate the in vivo performance of four different oral formulations of posaconazole (categorized as a biopharmaceutics classification system (BCS) class 2b compound) based on the in vitro concentrations in the gastrointestinal simulator (GIS), coupled with an in silico pharmacokinetic model to predict their systemic profiles. Recently published intraluminal and systemic concentrations of posaconazole for these formulations served as a reference to validate the in vitro and in silico results. Additionally, the morphology of the formed precipitate of posaconazole was visualized and characterized by optical microscopy studies and thermal analysis. This multidisciplinary work demonstrates an in vitro-in silico-in vivo approach that provides a scientific basis for screening SDDS by a user-friendly formulation predictive dissolution (fPD) device in order to rank these formulations towards their in vivo performance.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Triazoles/química , Triazoles/metabolismo , Administración Oral , Disponibilidad Biológica , Biofarmacia/métodos , Química Farmacéutica/métodos , Simulación por Computador , Sistemas de Liberación de Medicamentos/métodos , Absorción Intestinal/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Solubilidad/efectos de los fármacos
5.
J Pharm Sci ; 107(1): 113-120, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097226

RESUMEN

This work challenges the popular notion that pharmaceutical salts are more soluble than cocrystals. There are cocrystals that are more soluble than salt forms of a drug and vice-versa. It all depends on the interplay between the chemistry of both the solid and solution phases. Aqueous solubility, pHmax, and supersaturation index (SA = SCC/SD or Ssalt/SD) of cocrystals and salts of a basic drug, lamotrigine (LTG), were determined, and mathematical models that predict the influence of cocrystal/salt Ksp and Ka were derived. Ksp and SA followed the order LTG-nicotinamide cocrystal (18) > LTG-HCl salt (12) > LTG-saccharin salt (5) > LTG-methylparaben cocrystal (1) > LTG-phenobarbital cocrystal (0.2). The values in parenthesis represent SA under nonionizing conditions. Cocrystal/salt solubility and thermodynamic stability are determined by pH and will drastically change with a single unit change in pH. pHmax values ranged from 5.0 (saccharin salt) to 6.4 (methylparaben cocrystal) to 9.0 (phenobarbital cocrystal). Cocrystal/salt pHmax dependence on pKsp and pKa shows that cocrystals and salts exhibit different behavior. Solubility and pHmax are as important as supersaturation index in assessing the stability and risks associated with conversions of supersaturating forms.


Asunto(s)
Preparaciones Farmacéuticas/química , Sales (Química)/química , Agua/química , Cristalización/métodos , Concentración de Iones de Hidrógeno , Lamotrigina , Niacinamida/química , Sacarina/química , Solubilidad , Termodinámica , Triazinas/química
6.
Cryst Growth Des ; 17(10): 5012-5016, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31537980

RESUMEN

A drug-drug cocrystal of two anticonvulsants, lamotrigine and phenobarbital, is presented. In the crystal structure, molecules form heterodimers via N-H···O and N-H···N hydrogen bonding. The intrinsic dissolution rate (IDR) and solubility of the cocrystal were measured in phosphate buffer (pH 7.2) and simulated gastric fluid (without pepsin), and compared to pure APIs. Dissolution experiments found suppressed IDR of the cocrystal with rates in the order pure PB > pure LTG > cocrystal. The solubility measurements were consistent with the dissolution behavior. The presence of strong heterodimers in the cocrystal compared to weaker homodimers in the parent drugs is implicated for the reduced solubility and dissolution rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...