Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(4): e2218373120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656864

RESUMEN

The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6ß4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Sistema de Señalización de MAP Quinasas , Humanos , Femenino , Neoplasias de la Mama/patología , Transducción de Señal , Transformación Celular Neoplásica/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Línea Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282921

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Asunto(s)
Síndrome Metabólico , PPAR alfa , Animales , Ratones , Proteínas Portadoras/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Ratones Noqueados , Fosforilación , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , MAP Quinasa Quinasa 4/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(28): 16492-16499, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601222

RESUMEN

Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colangiocarcinoma/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/fisiopatología , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , PPAR alfa/genética , PPAR alfa/metabolismo
4.
Elife ; 52016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27635635

RESUMEN

Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.


Asunto(s)
Tejido Adiposo/fisiología , Empalme Alternativo , Antígenos de Neoplasias/análisis , Proteínas de Unión al ARN/análisis , Termogénesis , Animales , Antígenos de Neoplasias/genética , Biología Computacional , Hiperglucemia , Ratones Endogámicos C57BL , Ratones Noqueados , Antígeno Ventral Neuro-Oncológico , Obesidad/fisiopatología , Proteínas de Unión al ARN/genética
5.
Cell Rep ; 14(10): 2273-80, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26947074

RESUMEN

The cJun NH2-terminal kinase (JNK)-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21) is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Enfermedades Metabólicas/etiología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Glucemia/análisis , Células Cultivadas , Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/sangre , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Leptina/sangre , Quinasas Quinasa Quinasa PAM/deficiencia , Quinasas Quinasa Quinasa PAM/genética , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Enzima Bifuncional Peroxisomal/genética , Enzima Bifuncional Peroxisomal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Resistina/sangre , Transducción de Señal , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
6.
Elife ; 5: e10031, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26910012

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Neuronas/fisiología , Estrés Fisiológico , Proteína Relacionada con Agouti/análisis , Animales , Dieta Alta en Grasa , Hiperfagia , Ratones , Ratones Noqueados , Proteína Quinasa 10 Activada por Mitógenos/deficiencia
7.
Cell Metab ; 20(3): 512-25, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25043817

RESUMEN

The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high-fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here, we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). Therefore, JNK causes decreased expression of PPARα target genes that increase fatty acid oxidation and ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα-FGF21 hormone axis suppresses the metabolic effects of JNK deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , PPAR alfa/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Resistencia a la Insulina , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo
8.
Genes Dev ; 27(21): 2345-55, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24186979

RESUMEN

The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway.


Asunto(s)
Dieta Alta en Grasa , Yoduro Peroxidasa/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Obesidad/fisiopatología , Animales , Metabolismo Energético/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Ratones , Obesidad/genética , Adenohipófisis/metabolismo , Hormonas Tiroideas/metabolismo , Yodotironina Deyodinasa Tipo II
9.
Proc Natl Acad Sci U S A ; 109(30): 12046-51, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22753496

RESUMEN

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway is implicated in cancer, but the role of JNK in tumorigenesis is poorly understood. Here, we demonstrate that the JNK signaling pathway reduces the development of invasive adenocarcinoma in the phosphatase and tensin homolog (Pten) conditional deletion model of prostate cancer. Mice with JNK deficiency in the prostate epithelium (ΔJnk ΔPten mice) develop androgen-independent metastatic prostate cancer more rapidly than control (ΔPten) mice. Similarly, prevention of JNK activation in the prostate epithelium (ΔMkk4 ΔMkk7 ΔPten mice) causes rapid development of invasive adenocarcinoma. We found that JNK signaling defects cause an androgen-independent expansion of the immature progenitor cell population in the primary tumor. The JNK-deficient progenitor cells display increased proliferation and tumorigenic potential compared with progenitor cells from control prostate tumors. These data demonstrate that the JNK and PTEN signaling pathways can cooperate to regulate the progression of prostate neoplasia to invasive adenocarcinoma.


Asunto(s)
Adenocarcinoma/fisiopatología , Transformación Celular Neoplásica/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/fisiopatología , Animales , Técnicas Histológicas , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente
10.
Cancer Res ; 72(2): 472-81, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22127926

RESUMEN

cJun NH(2)-terminal kinase (JNK) signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study, we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial cells. In the setting of breast cancer development, JNK1/2 deficiency significantly increased tumor formation. Together, these findings established that JNK signaling is required for normal mammary gland development and that it has a suppressive role in mammary tumorigenesis.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/crecimiento & desarrollo , Neoplasias Mamarias Experimentales/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Movimiento Celular/fisiología , Femenino , Expresión Génica , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/genética
11.
Genes Dev ; 24(3): 256-64, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20080940

RESUMEN

The cJun N-terminal kinase 1 (JNK1) is implicated in diet-induced obesity. Indeed, germline ablation of the murine Jnk1 gene prevents diet-induced obesity. Here we demonstrate that selective deficiency of JNK1 in the murine nervous system is sufficient to suppress diet-induced obesity. The failure to increase body mass is mediated, in part, by increased energy expenditure that is associated with activation of the hypothalamic-pituitary-thyroid axis. Disruption of thyroid hormone function prevents the effects of nervous system JNK1 deficiency on body mass. These data demonstrate that the hypothalamic-pituitary-thyroid axis represents an important target of metabolic signaling by JNK1.


Asunto(s)
Sistema Hipotálamo-Hipofisario/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Hipófisis/metabolismo , Glándula Tiroides/metabolismo , Animales , Ingestión de Alimentos , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/genética , Obesidad/metabolismo , Transducción de Señal
12.
Mol Cell Biol ; 30(1): 98-105, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19841067

RESUMEN

Bcl2-modifying factor (Bmf) is a member of the BH3-only group of proapoptotic proteins. To test the role of Bmf in vivo, we constructed mice with a series of mutated Bmf alleles that disrupt Bmf expression, prevent Bmf phosphorylation by the c-Jun NH(2)-terminal kinase (JNK) on Ser(74), or mimic Bmf phosphorylation on Ser(74). We report that the loss of Bmf causes defects in uterovaginal development, including an imperforate vagina and hydrometrocolpos. We also show that the phosphorylation of Bmf on Ser(74) can contribute to a moderate increase in levels of Bmf activity. Studies of compound mutants with the related gene Bim demonstrated that Bim and Bmf exhibit partially redundant functions in vivo. Thus, developmental ablation of interdigital webbing on mouse paws and normal lymphocyte homeostasis require the cooperative activity of Bim and Bmf.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Apoptosis , Proteínas de la Membrana/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Supervivencia Celular , Femenino , Homeostasis , Hidrocolpos/embriología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Deformidades Congénitas de las Extremidades/embriología , Linfocitos/citología , Linfocitos/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Mutación , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Serina/metabolismo , Vagina/anomalías , Vagina/embriología
13.
Mol Cell Biol ; 30(1): 106-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19841069

RESUMEN

Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH(2)-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1(-)(/)(-) mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (M(KO)) mice exhibit improved insulin sensitivity compared with control wild-type (M(WT)) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed M(WT) mice but is suppressed only in the liver and adipose tissue of M(KO) mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.


Asunto(s)
Resistencia a la Insulina , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Músculo Esquelético/enzimología , Obesidad/fisiopatología , Animales , Grasas de la Dieta , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Obesidad/enzimología , Obesidad/etiología , Especificidad de Órganos , Transducción de Señal
14.
Cell Metab ; 10(6): 491-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19945406

RESUMEN

Nonalcoholic steatosis (fatty liver) is a major cause of liver dysfunction that is associated with insulin resistance and metabolic syndrome. The cJun NH(2)-terminal kinase 1 (JNK1) signaling pathway is implicated in the pathogenesis of hepatic steatosis and drugs that target JNK1 may be useful for treatment of this disease. Indeed, mice with defects in JNK1 expression in adipose tissue are protected against hepatic steatosis. Here we report that mice with specific ablation of Jnk1 in hepatocytes exhibit glucose intolerance, insulin resistance, and hepatic steatosis. JNK1 therefore serves opposing actions in liver and adipose tissue to both promote and prevent hepatic steatosis. This finding has potential implications for the design of JNK1-selective drugs for the treatment of metabolic syndrome.


Asunto(s)
Hígado Graso/metabolismo , Intolerancia a la Glucosa/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Animales , Ratones , Ratones Transgénicos , Especificidad de Órganos , Transducción de Señal/fisiología
15.
Genes Dev ; 21(18): 2336-46, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17875667

RESUMEN

JIP scaffold proteins are implicated in the regulation of protein kinase signal transduction pathways. To test the physiological role of these scaffold proteins, we examined the phenotype of compound mutant mice that lack expression of JIP proteins. These mice were found to exhibit severe defects in N-methyl-D-aspartic acid (NMDA) receptor function, including decreased NMDA-evoked current amplitude, cytoplasmic Ca(++), and gene expression. The decreased NMDA receptor activity in JIP-deficient neurons is associated with reduced tyrosine phosphorylation of NR2 subunits of the NMDA receptor. JIP complexes interact with the SH2 domain of cFyn and may therefore promote tyrosine phosphorylation and activity of the NMDA receptor. We conclude that JIP scaffold proteins are critically required for normal NMDA receptor function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Cerebelo/embriología , Cerebelo/metabolismo , Chlorocebus aethiops , Cinesinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...