Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroradiology ; 66(5): 653-675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507081

RESUMEN

Autoimmune encephalitis is a relatively novel nosological entity characterized by an immune-mediated damage of the central nervous system. While originally described as a paraneoplastic inflammatory phenomenon affecting limbic structures, numerous instances of non-paraneoplastic pathogenesis, as well as extra-limbic involvement, have been characterized. Given the wide spectrum of insidious clinical presentations ranging from cognitive impairment to psychiatric symptoms or seizures, it is crucial to raise awareness about this disease category. In fact, an early diagnosis can be dramatically beneficial for the prognosis both to achieve an early therapeutic intervention and to detect a potential underlying malignancy. In this scenario, the radiologist can be the first to pose the hypothesis of autoimmune encephalitis and refer the patient to a comprehensive diagnostic work-up - including clinical, serological, and neurophysiological assessments.In this article, we illustrate the main radiological characteristics of autoimmune encephalitis and its subtypes, including the typical limbic presentation, the features of extra-limbic involvement, and also peculiar imaging findings. In addition, we review the most relevant alternative diagnoses that should be considered, ranging from other encephalitides to neoplasms, vascular conditions, and post-seizure alterations. Finally, we discuss the most appropriate imaging diagnostic work-up, also proposing a suggested MRI protocol.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Enfermedad de Hashimoto , Encefalitis Límbica , Humanos , Encefalitis/diagnóstico por imagen , Enfermedad de Hashimoto/diagnóstico por imagen , Autoanticuerpos , Convulsiones , Radiólogos , Encefalitis Límbica/diagnóstico por imagen
2.
Magn Reson Med ; 92(2): 702-714, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38525680

RESUMEN

PURPOSE: This study aimed to develop a new high-resolution MRI sequence for the imaging of the ultra-short transverse relaxation time (uT2) components in the brain, while simultaneously providing proton density (PD) contrast for reference and quantification. THEORY: The sequence combines low flip angle balanced SSFP (bSSFP) and UTE techniques, together with a 3D dual-echo rosette k-space trajectory for readout. METHODS: The expected image contrast was evaluated by simulations. A study cohort of six healthy volunteers and eight multiple sclerosis (MS) patients was recruited to test the proposed sequence. Subtraction between two TEs was performed to extract uT2 signals. In addition, conventional longitudinal relaxation time (T1) weighted, T2-weighted, and PD-weighted MRI sequences were also acquired for comparison. RESULTS: Typical PD-contrast was found in the second TE images, while uT2 signals were selectively captured in the first TE images. The subtraction images presented signals primarily originating from uT2 components, but only if the first TE is short enough. Lesions in the MS subjects showed hyperintense signals in the second TE images but were hypointense signals in the subtraction images. The lesions had significantly lower signal intensity in subtraction images than normal white matter (WM), which indicated a reduction of uT2 components likely associated with myelin. CONCLUSION: 3D isotropic sub-millimeter (0.94 mm) spatial resolution images were acquired with the novel bSSFP UTE sequence within 3 min. It provided easy extraction of uT2 signals and PD-contrast for reference within a single acquisition.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Masculino , Femenino , Algoritmos , Persona de Mediana Edad , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Voluntarios Sanos , Simulación por Computador
3.
Magn Reson Med ; 91(6): 2417-2430, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38291598

RESUMEN

PURPOSE: Recent work has shown MRI is able to measure and quantify signals of phospholipid membrane-bound protons associated with myelin in the human brain. This work seeks to develop an improved technique for characterizing this brain ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component in vivo accounting for T 1 $$ {\mathrm{T}}_1 $$ weighting. METHODS: Data from ultrashort echo time scans from 16 healthy volunteers with variable flip angles (VFA) were collected and fitted into an advanced regression model to quantify signal fraction, relaxation time, and frequency shift of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component. RESULTS: The fitted components show intra-subject differences of different white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ signal fraction in the corticospinal tracts measured at 0.09 versus 0.06 in other white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ frequency shift in the body of the corpus callosum at - $$ - $$ 1.5 versus - $$ - $$ 2.0 ppm in other white matter structures. CONCLUSION: The significantly different measured components and measured T 1 $$ {\mathrm{T}}_1 $$ relaxation time of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component suggest that this method is picking up novel signals from phospholipid membrane-bound protons.


Asunto(s)
Encéfalo , Protones , Humanos , Voluntarios Sanos , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fosfolípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...