Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Science ; 384(6696): 639-646, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723095

RESUMEN

Despite identifying El Niño events as a factor in dengue dynamics, predicting the oscillation of global dengue epidemics remains challenging. Here, we investigate climate indicators and worldwide dengue incidence from 1990 to 2019 using climate-driven mechanistic models. We identify a distinct indicator, the Indian Ocean basin-wide (IOBW) index, as representing the regional average of sea surface temperature anomalies in the tropical Indian Ocean. IOBW is closely associated with dengue epidemics for both the Northern and Southern hemispheres. The ability of IOBW to predict dengue incidence likely arises as a result of its effect on local temperature anomalies through teleconnections. These findings indicate that the IOBW index can potentially enhance the lead time for dengue forecasts, leading to better-planned and more impactful outbreak responses.


Asunto(s)
Dengue , Epidemias , Humanos , Modelos Climáticos , Dengue/epidemiología , El Niño Oscilación del Sur , Incidencia , Océano Índico , Calor
2.
Sci Adv ; 9(39): eadf7202, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37756402

RESUMEN

Identifying climate drivers is essential to understand and predict epidemics of mosquito-borne infections whose population dynamics typically exhibit seasonality and multiannual cycles. Which climate covariates to consider varies across studies, from local factors such as temperature to remote drivers such as the El Niño-Southern Oscillation. With partial wavelet coherence, we present a systematic investigation of nonstationary associations between mosquito-borne disease incidence and a given climate factor while controlling for another. Analysis of almost 200 time series of dengue and malaria around the globe at different geographical scales shows a systematic effect of global climate drivers on interannual variability and of local ones on seasonality. This clear separation of time scales of action enhances detection of climate drivers and indicates those best suited for building early-warning systems.


Asunto(s)
Culicidae , Epidemias , Animales , Dinámica Poblacional , El Niño Oscilación del Sur , Temperatura
3.
Sci Rep ; 13(1): 8042, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198426

RESUMEN

Human microbiome research is helped by the characterization of microbial networks, as these may reveal key microbes that can be targeted for beneficial health effects. Prevailing methods of microbial network characterization are based on measures of association, often applied to limited sampling points in time. Here, we demonstrate the potential of wavelet clustering, a technique that clusters time series based on similarities in their spectral characteristics. We illustrate this technique with synthetic time series and apply wavelet clustering to densely sampled human gut microbiome time series. We compare our results with hierarchical clustering based on temporal correlations in abundance, within and across individuals, and show that the cluster trees obtained by using either method are significantly different in terms of elements clustered together, branching structure and total branch length. By capitalizing on the dynamic nature of the human microbiome, wavelet clustering reveals community structures that remain obscured in correlation-based methods.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Análisis de Ondículas , Consorcios Microbianos , Análisis por Conglomerados
4.
Commun Med (Lond) ; 2: 12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603266

RESUMEN

Background: Rigorous assessment of the effect of malaria control strategies on local malaria dynamics is a complex but vital step in informing future strategies to eliminate malaria. However, the interactions between climate forcing, mass drug administration, mosquito control and their effects on the incidence of malaria remain unclear. Methods: Here, we analyze the effects of interventions on the transmission dynamics of malaria (Plasmodium vivax and Plasmodium falciparum) on Hainan Island, China, controlling for environmental factors. Mathematical models were fitted to epidemiological data, including confirmed cases and population-wide blood examinations, collected between 1995 and 2010, a period when malaria control interventions were rolled out with positive outcomes. Results: Prior to the massive scale-up of interventions, malaria incidence shows both interannual variability and seasonality, as well as a strong correlation with climatic patterns linked to the El Nino Southern Oscillation. Based on our mechanistic model, we find that the reduction in malaria is likely due to the large scale rollout of insecticide-treated bed nets, which reduce the infections of P. vivax and P. falciparum malaria by 93.4% and 35.5%, respectively. Mass drug administration has a greater contribution in the control of P. falciparum (54.9%) than P. vivax (5.3%). In a comparison of interventions, indoor residual spraying makes a relatively minor contribution to malaria control (1.3%-9.6%). Conclusions: Although malaria transmission on Hainan Island has been exacerbated by El Nino Southern Oscillation, control methods have eliminated both P. falciparum and P. vivax malaria from this part of China.

6.
Lancet Planet Health ; 6(4): e350-e358, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35397223

RESUMEN

BACKGROUND: The influence of rising global temperatures on malaria dynamics and distribution remains controversial, especially in central highland regions. We aimed to address this subject by studying the spatiotemporal heterogeneity of malaria and the effect of climate change on malaria transmission over 27 years in Hainan, an island province in China. METHODS: For this longitudinal cohort study, we used a decades-long dataset of malaria incidence reports from Hainan, China, to investigate the pattern of malaria transmission in Hainan relative to temperature and the incidence at increasing altitudes. Climatic data were obtained from the local meteorological stations in Hainan during 1984-2010 and the WorldClim dataset. A temperature-dependent R0 model and negative binomial generalised linear model were used to decipher the relationship between climate factors and malaria incidence in the tropical region. FINDINGS: Over the past few decades, the annual peak incidence has appeared earlier in the central highland regions but later in low-altitude regions in Hainan, China. Results from the temperature-dependent model showed that these long-term changes of incidence peak timing are linked to rising temperatures (of about 1·5°C). Further, a 1°C increase corresponds to a change in cases of malaria from -5·6% (95% CI -4·5 to -6·6) to -9·2% (95% CI -7·6 to -10·9) from the northern plain regions to the central highland regions during the rainy season. In the dry season, the change in cases would be 4·6% (95% CI 3·7 to 5·5) to 11·9% (95% CI 9·8 to 14·2) from low-altitude areas to high-altitude areas. INTERPRETATION: Our study empirically supports the idea that increasing temperatures can generate opposing effects on malaria dynamics for lowland and highland regions. This should be further investigated and incorporated into future modelling, disease burden calculations, and malaria control, with attention for central highland regions under climate change. FUNDING: Scientific and Technological Innovation 2030: Major Project of New Generation Artificial Intelligence, National Natural Science Foundation of China, Beijing Natural Science Foundation, National Key Research and Development Program of China, Young Elite Scientist Sponsorship Program by CAST, Research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region, and Beijing Advanced Innovation Program for Land Surface Science.


Asunto(s)
Inteligencia Artificial , Malaria , China/epidemiología , Estudios de Cohortes , Humanos , Incidencia , Estudios Longitudinales , Malaria/epidemiología , Malaria/prevención & control , Temperatura
7.
Lancet Infect Dis ; 22(5): 657-667, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247320

RESUMEN

BACKGROUND: The COVID-19 pandemic has resulted in unprecedented disruption to society, which indirectly affects infectious disease dynamics. We aimed to assess the effects of COVID-19-related disruption on dengue, a major expanding acute public health threat, in southeast Asia and Latin America. METHODS: We assembled data on monthly dengue incidence from WHO weekly reports, climatic data from ERA5, and population variables from WorldPop for 23 countries between January, 2014 and December, 2019 and fit a Bayesian regression model to explain and predict seasonal and multi-year dengue cycles. We compared model predictions with reported dengue data January to December, 2020, and assessed if deviations from projected incidence since March, 2020 are associated with specific public health and social measures (from the Oxford Coronavirus Government Response Tracer database) or human movement behaviours (as measured by Google mobility reports). FINDINGS: We found a consistent, prolonged decline in dengue incidence across many dengue-endemic regions that began in March, 2020 (2·28 million cases in 2020 vs 4·08 million cases in 2019; a 44·1% decrease). We found a strong association between COVID-19-related disruption (as measured independently by public health and social measures and human movement behaviours) and reduced dengue risk, even after taking into account other drivers of dengue cycles including climatic and host immunity (relative risk 0·01-0·17, p<0·01). Measures related to the closure of schools and reduced time spent in non-residential areas had the strongest evidence of association with reduced dengue risk, but high collinearity between covariates made specific attribution challenging. Overall, we estimate that 0·72 million (95% CI 0·12-1·47) fewer dengue cases occurred in 2020 potentially attributable to COVID-19-related disruption. INTERPRETATION: In most countries, COVID-19-related disruption led to historically low dengue incidence in 2020. Continuous monitoring of dengue incidence as COVID-19-related restrictions are relaxed will be important and could give new insights into transmission processes and intervention options. FUNDING: National Key Research and Development Program of China and the Medical Research Council.


Asunto(s)
COVID-19 , Dengue , Teorema de Bayes , COVID-19/epidemiología , Dengue/epidemiología , Humanos , América Latina/epidemiología , Pandemias , SARS-CoV-2
8.
BMC Infect Dis ; 21(1): 735, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344318

RESUMEN

BACKGROUND: In Ireland and across the European Union the COVID-19 epidemic waves, driven mainly by the emergence of new variants of the SARS-CoV-2 have continued their course, despite various interventions from governments. Public health interventions continue in their attempts to control the spread as they wait for the planned significant effect of vaccination. METHODS: To tackle this challenge and the observed non-stationary aspect of the epidemic we used a modified SEIR stochastic model with time-varying parameters, following Brownian process. This enabled us to reconstruct the temporal evolution of the transmission rate of COVID-19 with the non-specific hypothesis that it follows a basic stochastic process constrained by the available data. This model is coupled with Bayesian inference (particle Markov Chain Monte Carlo method) for parameter estimation and utilized mainly well-documented Irish hospital data. RESULTS: In Ireland, mitigation measures provided a 78-86% reduction in transmission during the first wave between March and May 2020. For the second wave in October 2020, our reduction estimation was around 20% while it was 70% for the third wave in January 2021. This third wave was partly due to the UK variant appearing in Ireland. In June 2020 we estimated that sero-prevalence was 2.0% (95% CI: 1.2-3.5%) in complete accordance with a sero-prevalence survey. By the end of April 2021, the sero-prevalence was greater than 17% due in part to the vaccination campaign. Finally we demonstrate that the available observed confirmed cases are not reliable for analysis owing to the fact that their reporting rate has as expected greatly evolved. CONCLUSION: We provide the first estimations of the dynamics of the COVID-19 epidemic in Ireland and its key parameters. We also quantify the effects of mitigation measures on the virus transmission during and after mitigation for the three waves. Our results demonstrate that Ireland has significantly reduced transmission by employing mitigation measures, physical distancing and lockdown. This has to date avoided the saturation of healthcare infrastructures, flattened the epidemic curve and likely reduced mortality. However, as we await for a full roll out of a vaccination programme and as new variants potentially more transmissible and/or more infectious could continue to emerge and mitigation measures change silent transmission, challenges remain.


Asunto(s)
COVID-19 , Epidemias , Teorema de Bayes , Control de Enfermedades Transmisibles , Humanos , Irlanda/epidemiología , SARS-CoV-2
9.
PLoS Comput Biol ; 17(7): e1009211, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310593

RESUMEN

The effective reproduction number Reff is a critical epidemiological parameter that characterizes the transmissibility of a pathogen. However, this parameter is difficult to estimate in the presence of silent transmission and/or significant temporal variation in case reporting. This variation can occur due to the lack of timely or appropriate testing, public health interventions and/or changes in human behavior during an epidemic. This is exactly the situation we are confronted with during this COVID-19 pandemic. In this work, we propose to estimate Reff for the SARS-CoV-2 (the etiological agent of the COVID-19), based on a model of its propagation considering a time-varying transmission rate. This rate is modeled by a Brownian diffusion process embedded in a stochastic model. The model is then fitted by Bayesian inference (particle Markov Chain Monte Carlo method) using multiple well-documented hospital datasets from several regions in France and in Ireland. This mechanistic modeling framework enables us to reconstruct the temporal evolution of the transmission rate of the COVID-19 based only on the available data. Except for the specific model structure, it is non-specifically assumed that the transmission rate follows a basic stochastic process constrained by the observations. This approach allows us to follow both the course of the COVID-19 epidemic and the temporal evolution of its Reff(t). Besides, it allows to assess and to interpret the evolution of transmission with respect to the mitigation strategies implemented to control the epidemic waves in France and in Ireland. We can thus estimate a reduction of more than 80% for the first wave in all the studied regions but a smaller reduction for the second wave when the epidemic was less active, around 45% in France but just 20% in Ireland. For the third wave in Ireland the reduction was again significant (>70%).


Asunto(s)
Número Básico de Reproducción , COVID-19/epidemiología , COVID-19/transmisión , Pandemias , SARS-CoV-2 , Algoritmos , Número Básico de Reproducción/estadística & datos numéricos , Teorema de Bayes , Biología Computacional , Epidemias/estadística & datos numéricos , Francia/epidemiología , Humanos , Irlanda/epidemiología , Cadenas de Markov , Modelos Estadísticos , Método de Montecarlo , Pandemias/estadística & datos numéricos , Estudios Seroepidemiológicos , Procesos Estocásticos , Factores de Tiempo
10.
Math Biosci ; 335: 108583, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713696

RESUMEN

We present a new Bayesian inference method for compartmental models that takes into account the intrinsic stochasticity of the process. We show how to formulate a SIR-type Markov jump process as the solution of a stochastic differential equation with respect to a Poisson Random Measure (PRM), and how to simulate the process trajectory deterministically from a parameter value and a PRM realization. This forms the basis of our Data Augmented MCMC, which consists of augmenting parameter space with the unobserved PRM value. The resulting simple Metropolis-Hastings sampler acts as an efficient simulation-based inference method, that can easily be transferred from model to model. Compared with a recent Data Augmentation method based on Gibbs sampling of individual infection histories, PRM-augmented MCMC scales much better with epidemic size and is far more flexible. It is also found to be competitive with Particle MCMC for moderate epidemics when using approximate simulations. PRM-augmented MCMC also yields a posteriori estimates of the PRM, that represent process stochasticity, and which can be used to validate the model. A pattern of deviation from the PRM prior distribution will indicate that the model underfits the data and help to understand the cause. We illustrate this by fitting a non-seasonal model to some simulated seasonal case count data. Applied to the Zika epidemic of 2013 in French Polynesia, our approach shows that a simple SEIR model cannot correctly reproduce both the initial sharp increase in the number of cases as well as the final proportion of seropositive. PRM augmentation thus provides a coherent story for Stochastic Epidemic Model inference, where explicitly inferring process stochasticity helps with model validation.


Asunto(s)
Epidemias , Métodos Epidemiológicos , Modelos Biológicos , Teorema de Bayes , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/epidemiología , Simulación por Computador , Epidemias/estadística & datos numéricos , Humanos , Cadenas de Markov , Distribución de Poisson , Polinesia/epidemiología , Virus Zika , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología
11.
Int J Infect Dis ; 104: 693-695, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33540130

RESUMEN

Recent literature strongly supports the hypothesis that mobility restriction and social distancing play a crucial role in limiting the transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). During the first wave of the coronavirus disease 2019 (COVID-19) pandemic, it was shown that mobility restriction reduced transmission significantly. This study found that, in the period between the first two waves of the COVID-19 pandemic, there was high positive correlation between trends in the transmission of SARS-CoV-2 and mobility. These two trends oscillated simultaneously, and increased mobility following the relaxation of lockdown rules was significantly associated with increased transmission. From a public health perspective, these results highlight the importance of tracking changes in mobility when relaxing mitigation measures in order to anticipate future changes in the spread of SARS-CoV-2.


Asunto(s)
COVID-19/transmisión , SARS-CoV-2 , Número Básico de Reproducción , COVID-19/prevención & control , Humanos , Salud Pública , Cuarentena , Recreación , Viaje
12.
Trends Ecol Evol ; 35(12): 1090-1099, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32933777

RESUMEN

Understanding ecological processes and predicting long-term dynamics are ongoing challenges in ecology. To address these challenges, we suggest an approach combining mathematical analyses and Bayesian hierarchical statistical modeling with diverse data sources. Novel mathematical analysis of ecological dynamics permits a process-based understanding of conditions under which systems approach equilibrium, experience large oscillations, or persist in transient states. This understanding is improved by combining ecological models with empirical observations from a variety of sources. Bayesian hierarchical models explicitly couple process-based models and data, yielding probabilistic quantification of model parameters, system characteristics, and associated uncertainties. We outline relevant tools from dynamical analysis and hierarchical modeling and argue for their integration, demonstrating the value of this synthetic approach through a simple predator-prey example.


Asunto(s)
Modelos Biológicos , Modelos Estadísticos , Animales , Teorema de Bayes , Ecosistema , Dinámica Poblacional , Conducta Predatoria , Incertidumbre
13.
Sci Total Environ ; 724: 138269, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32408457

RESUMEN

We studied the dynamics of dengue disease in two epidemic regions in Sri Lanka, the densely populated Colombo district representing the wet zone and the relatively less populated Batticaloa district representing the dry zone. Regional differences in disease dynamics were analysed against regional weather factors. Wavelets, Granger causality and regression methods were used. The difference between the dynamical features of these two regions may be explained by the differences in the climatic characteristics of the two regions. Wavelet analysis revealed that Colombo dengue incidence has 6 months periodicity while Batticaloa dengue incidence has 1 year periodicity. This is well explained by the dominant 6 months periodicity in Colombo rainfall and 1 year periodicity in Batticaloa rainfall. The association between dengue incidence and temperature was negative in dry Batticaloa and was insignificant in wet Colombo. Granger causality results indicated that rainfall, rainy days, relative humidity and wind speed can be used to predict Colombo dengue incidence while only rainfall and relative humidity were significant in Batticaloa. Negative binomial and linear regression models were used to identify the weather variables which best explain the variations in dengue incidence. Most recent available incidence data performed as best explanatory variables, outweighing the importance of past weather data. Therefore we recommend the health authorities to closely monitor the number of cases and to streamline recording procedures so that most recent data are available for early detection of epidemics. We also noted that epidemic responses to weather changes appear quickly in densely populated Colombo compared to less populated Batticaloa. The past dengue incidence and weather variables explain the dengue incidence better in Batticaloa than in Colombo and thus other exogenous factors such as population density and human mobility may be affecting Colombo dengue incidence.


Asunto(s)
Dengue , Humanos , Incidencia , Lluvia , Sri Lanka , Tiempo (Meteorología)
14.
PLoS Negl Trop Dis ; 14(3): e0008110, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32142511

RESUMEN

Understanding the transition of epidemic to endemic dengue transmission remains a challenge in regions where serotypes co-circulate and there is extensive human mobility. French Polynesia, an isolated group of 117 islands of which 72 are inhabited, distributed among five geographically separated subdivisions, has recorded mono-serotype epidemics since 1944, with long inter-epidemic periods of circulation. Laboratory confirmed cases have been recorded since 1978, enabling exploration of dengue epidemiology under monotypic conditions in an isolated, spatially structured geographical location. A database was constructed of confirmed dengue cases, geolocated to island for a 35-year period. Statistical analyses of viral establishment, persistence and fade-out as well as synchrony among subdivisions were performed. Seven monotypic and one heterotypic dengue epidemic occurred, followed by low-level viral circulation with a recrudescent epidemic occurring on one occasion. Incidence was asynchronous among the subdivisions. Complete viral die-out occurred on several occasions with invasion of a new serotype. Competitive serotype replacement has been observed previously and seems to be characteristic of the South Pacific. Island population size had a strong impact on the establishment, persistence and fade-out of dengue cases and endemicity was estimated achievable only at a population size in excess of 175 000. Despite island remoteness and low population size, dengue cases were observed somewhere in French Polynesia almost constantly, in part due to the spatial structuration generating asynchrony among subdivisions. Long-term persistence of dengue virus in this group of island populations may be enabled by island hopping, although could equally be explained by a reservoir of sub-clinical infections on the most populated island, Tahiti.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Dengue/epidemiología , Dengue/virología , Transmisión de Enfermedad Infecciosa , Epidemias , Serogrupo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Dengue/transmisión , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Polinesia/epidemiología , Adulto Joven
15.
PLoS Negl Trop Dis ; 13(9): e0007757, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31545808

RESUMEN

Seoul hantavirus (SEOV) has recently raised concern by causing geographic range expansion of hemorrhagic fever with renal syndrome (HFRS). SEOV infections in humans are significantly underestimated worldwide and epidemic dynamics of SEOV-related HFRS are poorly understood because of a lack of field data and empirically validated models. Here, we use mathematical models to examine both intrinsic and extrinsic drivers of disease transmission from animal (the Norway rat) to humans in a SEOV-endemic area in China. We found that rat eradication schemes and vaccination campaigns, but below the local elimination threshold, could diminish the amplitude of the HFRS epidemic but did not modify its seasonality. Models demonstrate population dynamics of the rodent host were insensitive to climate variations in urban settings, while relative humidity had a negative effect on the seasonality in transmission. Our study contributes to a better understanding of the epidemiology of SEOV-related HFRS, demonstrates asynchronies between rodent population dynamics and transmission rate, and identifies potential drivers of the SEOV seasonality.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/transmisión , Animales , China/epidemiología , Ciudades , Clima , Fiebre Hemorrágica con Síndrome Renal/prevención & control , Humanos , Modelos Teóricos , Control de Roedores , Roedores/virología , Estaciones del Año , Virus Seoul , Vacunación
16.
Sci Rep ; 9(1): 7389, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089157

RESUMEN

Time series measured from real-world systems are generally noisy, complex and display statistical properties that evolve continuously over time. Here, we present a method that combines wavelet analysis and non-stationary surrogates to detect short-lived spatial coherent patterns from multivariate time-series. In contrast with standard methods, the surrogate data proposed here are realisations of a non-stationary stochastic process, preserving both the amplitude and time-frequency distributions of original data. We evaluate this framework on synthetic and real-world time series, and we show that it can provide useful insights into the time-resolved structure of spatially extended systems.

17.
Nat Commun ; 10(1): 1324, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902991

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that predominantly circulates between humans and Aedes mosquitoes. Clinical studies have shown that Zika viruria in patients persists for an extended period, and results in infectious virions being excreted. Here, we demonstrate that Aedes mosquitoes are permissive to ZIKV infection when breeding in urine or sewage containing low concentrations of ZIKV. Mosquito larvae and pupae, including from field Aedes aegypti can acquire ZIKV from contaminated aquatic systems, resulting in ZIKV infection of adult females. Adult mosquitoes can transmit infectious virions to susceptible type I/II interferon receptor-deficient (ifnagr-/-) C57BL/6 (AG6) mice. Furthermore, ZIKV viruria from infected AG6 mice can causes mosquito infection during the aquatic life stages. Our studies suggest that infectious urine could be a natural ZIKV source, which is potentially transmissible to mosquitoes when breeding in an aquatic environment.


Asunto(s)
Aedes/virología , Cruzamiento , Contaminación del Agua , Infección por el Virus Zika/parasitología , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Animales , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Aguas del Alcantarillado/virología , Virión/metabolismo , Infección por el Virus Zika/orina
18.
Math Biosci ; 310: 1-12, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30735695

RESUMEN

We perform estimations of compartment models for dengue transmission in rural Cambodia with increasing complexity regarding both model structure and the account for stochasticity. On the one hand, we successively account for three embedded sources of stochasticity: observation noise, demographic variability and environmental hazard. On the other hand, complexity in the model structure is increased by introducing vector-borne transmission, explicit asymptomatic infections and interacting virus serotypes. Using two sources of case data from dengue epidemics in Kampong Cham (Cambodia), models are estimated in the bayesian framework, with Markov Chain Monte Carlo and Particle Markov Chain Monte Carlo. We highlight the advantages and drawbacks of the different formulations in a practical setting. Although in this case the deterministic models provide a good approximation of the mean trajectory for a low computational cost, the stochastic frameworks better reflect and account for parameter and simulation uncertainty.


Asunto(s)
Dengue/transmisión , Modelos Biológicos , Modelos Estadísticos , Cambodia/epidemiología , Humanos , Cadenas de Markov , Método de Montecarlo , Procesos Estocásticos
19.
Water Res ; 154: 267-276, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30802701

RESUMEN

We are still facing the knowledge gap of how the water-quality extremes (i.e. phytoplankton blooms), their causes, severity or occurrence could be directly related to the climatic oscillation. Considering that the climatic and phytoplankton concentration time series are highly non-stationary, we applied the advanced time-frequency analysis - Ensemble Empirical Mode Decomposition (EEMD), Hilbert-Huang Spectrum (HHS) and Wavelet Analysis (WA) - to examine the variability of long term phytoplankton dynamics from 1986 to 2014 in five North Temperate Lakes (NTLs). These analysis techniques isolated five separate time series for the surface Chlorophyll a concentrations (CHL) of the five NTLs and a time series for the global climate oscillation (denoted by multivariate ENSO index, MEI), and showed that these time series generally operated at similar time scales. The long-term residual trends of decreasing were found in three lakes (i.e., BM, SP and TR lakes), which are the same to global climate dynamics (MEI). The wavelet analysis reveals strong coherency between MEI and CHL data sets for all lakes, with a periodicity of 64-months. Intuitive associations between the CHL and MEI data set showed that two types of ENSO (El Nino and La Nina) differ in their influences to CHL. Potential mechanisms relating the phytoplankton dynamics in NTLs to climatic oscillation (ENSO) were also discussed.


Asunto(s)
Lagos , Fitoplancton , Clorofila A , El Niño Oscilación del Sur
20.
Epidemics ; 26: 43-57, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30206040

RESUMEN

Dengue dynamics are shaped by the complex interplay between several factors, including vector seasonality, interaction between four virus serotypes, and inapparent infections. However, paucity or quality of data do not allow for all of these to be taken into account in mathematical models. In order to explore separately the importance of these factors in models, we combined surveillance data with a local-scale cluster study in the rural province of Kampong Cham (Cambodia), in which serotypes and asymptomatic infections were documented. We formulate several mechanistic models, each one relying on a different set of hypotheses, such as explicit vector dynamics, transmission via asymptomatic infections and coexistence of several virus serotypes. Models are confronted with the observed time series using Bayesian inference, through Markov chain Monte Carlo. Model selection is then performed using statistical information criteria, and the coherence of epidemiological characteristics (reproduction numbers, incidence proportion, dynamics of the susceptible classes) is assessed in each model. Our analyses on transmission dynamics in a rural endemic setting highlight that two-strain models with interacting effects better reproduce the long term data, but they are difficult to parameterize when relying on incidence cases only. On the other hand, considering the available data, incorporating vector and asymptomatic components seems of limited added-value when seasonality and underreporting are already accounted for.


Asunto(s)
Dengue/epidemiología , Modelos Estadísticos , Población Rural/estadística & datos numéricos , Animales , Teorema de Bayes , Cambodia/epidemiología , Virus del Dengue , Vectores de Enfermedades , Humanos , Incidencia , Cadenas de Markov , Método de Montecarlo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA