Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146023

RESUMEN

Pediatric diffuse midline gliomas (DMG) with H3-K27M-altered are aggressive brain tumors that arise during childhood. Despite advances in genomic knowledge and the significant number of clinical trials testing new targeted therapies, patient outcomes are still insufficient. Immune checkpoint blockades with small molecules, such as aptamers, are opening new therapeutic options that represent hope for this orphan disease. Here, we demonstrated that a TIM-3 aptamer as monotherapy increased the immune infiltration and elicited a strong specific immune response with a tendency to improve the overall survival of treated DMG-bearing mice. Importantly, combining TIM-3 Apt with radiotherapy increased the overall median survival and led to long-term survivor mice in two pediatric DMG orthotopic murine models. Interestingly, TIM-3 aptamer administration increased the number of myeloid populations and the pro-inflammatory ratios of CD8: Tregs in the tumor microenvironment as compared to non-treated groups after radiotherapy. Importantly, the depletion of T-cells led to a major loss of the therapeutic effect achieved by the combination. This work uncovers TIM-3 targeting as an immunotherapy approach to improve the radiotherapy outcome in DMGs and offers a strong foundation for propelling a phase I clinical trial using radiotherapy and TIM-3 blockade combination as a treatment for these tumors.

2.
Mol Cancer ; 21(1): 211, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443756

RESUMEN

BACKGROUND: The quality and quantity of tumor neoantigens derived from tumor mutations determines the fate of the immune response in cancer. Frameshift mutations elicit better tumor neoantigens, especially when they are not targeted by nonsense-mediated mRNA decay (NMD). For tumor progression, malignant cells need to counteract the immune response including the silencing of immunodominant neoantigens (antigen immunoediting) and promoting an immunosuppressive tumor microenvironment. Although NMD inhibition has been reported to induce tumor immunity and increase the expression of cryptic neoantigens, the possibility that NMD activity could be modulated by immune forces operating in the tumor microenvironment as a new immunoediting mechanism has not been addressed. METHODS: We study the effect of SMG1 expression (main kinase that initiates NMD) in the survival and the nature of the tumor immune infiltration using TCGA RNAseq and scRNAseq datasets of breast, lung and pancreatic cancer. Different murine tumor models were used to corroborate the antitumor immune dependencies of NMD. We evaluate whether changes of SMG1 expression in malignant cells impact the immune response elicited by cancer immunotherapy. To determine how NMD fluctuates in malignant cells we generated a luciferase reporter system to track NMD activity in vivo under different immune conditions. Cytokine screening, in silico studies and functional assays were conducted to determine the regulation of SMG1 via IL-6/STAT3 signaling. RESULTS: IL-6/STAT3 signaling induces SMG1, which limits the expression of potent frameshift neoantigens that are under NMD control compromising the outcome of the immune response. CONCLUSION: We revealed a new neoantigen immunoediting mechanism regulated by immune forces (IL-6/STAT3 signaling) responsible for silencing otherwise potent frameshift mutation-derived neoantigens.


Asunto(s)
Mutación del Sistema de Lectura , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/genética , Transducción de Señal , Degradación de ARNm Mediada por Codón sin Sentido , Microambiente Tumoral , Factor de Transcripción STAT3/genética , Proteínas Serina-Treonina Quinasas/genética
3.
Mol Ther ; 27(11): 1878-1891, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31405808

RESUMEN

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) blockade therapy is able to induce long-lasting antitumor responses in a fraction of cancer patients. Nonetheless, there is still room for improvement in the quest for new therapeutic combinations. ICOS costimulation has been underscored as a possible target to include with CTLA-4 blocking treatment. Herein, we describe an ICOS agonistic aptamer that potentiates T cell activation and induces stronger antitumor responses when locally injected at the tumor site in combination with anti-CTLA-4 antibody in different tumor models. Furthermore, ICOS agonistic aptamer was engineered as a bi-specific tumor-targeting aptamer to reach any disseminated tumor lesions after systemic injection. Treatment with the bi-specific aptamer in combination with CTLA-4 blockade showed strong antitumor immunity, even in a melanoma tumor model where CTLA-4 treatment alone did not display any significant therapeutic benefit. Thus, this work provides strong support for the development of combinatorial therapies involving anti-CTLA-4 blockade and ICOS agonist tumor-targeting agents.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Inmunomodulación/efectos de los fármacos , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteína Coestimuladora de Linfocitos T Inducibles/agonistas , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental , Ratones , Modelos Biológicos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Carga Tumoral
4.
Oncoimmunology ; 7(8): e1450711, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30221041

RESUMEN

In spite of the success of PD-1 blocking antibodies in the clinic their benefits are still restricted to a small fraction of patients. Immune-desert tumors and/or the highly immunosuppressive tumor milieu might hamper the success of PD-1/PD-L1 blocking therapies into a broader range of cancer patients. Although still under debate, there is a cumulative body of evidence that indicates B tumor-infiltrating lymphocytes are a good prognostic marker in most types of cancer, especially in those that form ectopic lymphoid tissue structures. Taking this into account, we reason that the adoptive transfer of activated B lymphoblasts (ABL) in the tumor could be a feasible therapeutic approach to shift the immunosuppressive tumor microenvironment into an immune-permissive one. In this work we show the antitumor effect of ABL therapy in two different tumor models: colon carcinoma (CT26) and melanoma (B16/F10). The ABL transfer in the most relevant non-immunogenic B16/F10 melanoma model depicts synergism with anti-PD-1 antibody therapy. Furthermore, systemic antitumor immunity was detected in mice treated with PD-1 antibody/ABL combination which was able to reach distal metastatic lesions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...