Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(14): 4225-4243, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37094092

RESUMEN

Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.


Asunto(s)
Beauveria , Enfermedades de las Plantas , Solanum lycopersicum , Beauveria/fisiología , Botrytis/fisiología , Desarrollo de la Planta , Enfermedades de las Plantas/microbiología , Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/fisiología , Hojas de la Planta/metabolismo , Proteoma , Simbiosis
2.
Cell Death Discov ; 8(1): 459, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36396939

RESUMEN

Skeletal muscle growth and regeneration involves the activity of resident adult stem cells, namely satellite cells (SC). Despite numerous mechanisms have been described, different signals are emerging as relevant in SC homeostasis. Here we demonstrated that the Receptor for Activated C-Kinase 1 (RACK1) is important in SC function. RACK1 was expressed transiently in the skeletal muscle of post-natal mice, being abundant in the early phase of muscle growth and almost disappearing in adult mature fibers. The presence of RACK1 in interstitial SC was also detected. After acute injury in muscle of both mouse and the fruit fly Drosophila melanogaster (used as alternative in vivo model) we found that RACK1 accumulated in regenerating fibers while it declined with the progression of repair process. To note, RACK1 also localized in the active SC that populate recovering tissue. The dynamics of RACK1 levels in isolated adult SC of mice, i.e., progressively high during differentiation and low compared to proliferating conditions, and RACK1 silencing indicated that RACK1 promotes both the formation of myotubes and the accretion of nascent myotubes. In Drosophila with depleted RACK1 in all muscle cells or, specifically, in SC lineage we observed a delayed recovery of skeletal muscle after physical damage as well as the low presence of active SC in the wound area. Our results also suggest the coupling of RACK1 to muscle unfolded protein response during SC activation. Collectively, we provided the first evidence that transient levels of the evolutionarily conserved factor RACK1 are critical for adult SC activation and proper skeletal muscle regeneration, favoring the efficient progression of SC from a committed to a fully differentiated state.

3.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233159

RESUMEN

FMRP is an RNA-binding protein that represses the translation of specific mRNAs. In neurons, its depletion determines the exaggerated translation of mRNAs leading to dendritic and axonal aberrant development, two peculiar features of Fragile X syndrome patients. However, how FMRP binds to translational machinery to regulate the translation of its mRNA targets is not yet fully understood. Here, we show that FMRP localizes on translational machinery by interacting with the ribosomal binding protein, Receptor for Activated C Kinase 1 (RACK1). The binding of FMRP to RACK1 removes the translational repressive activity of FMRP and promotes the translation of PSD-95 mRNA, one specific target of FMRP. This binding also results in a reduction in the level of FMRP phosphorylation. We also find that the morphological abnormalities induced by Fmr1 siRNA in cortical neurons are rescued by the overexpression of a mutant form of RACK1 that cannot bind ribosomes. Thus, these results provide a new mechanism underlying FMRP activity that contributes to altered development in FXS. Moreover, these data confirm the role of ribosomal RACK1 as a ribosomal scaffold for RNA binding proteins.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Receptores de Cinasa C Activada , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Humanos , Proteínas de Neoplasias/metabolismo , Plasticidad Neuronal , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166471, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35750268

RESUMEN

Ex-vivo simple models are powered tools to study cardiac hypertrophy. It is possible to control the activation of critical genes and thus test the effects of drug therapies before the in vivo tests. A zebrafish cardiac hypertrophy developed by 500 µM phenylephrine (PE) treatment in ex vivo culture has been demonstrated to activate the essential expression of the embryonal genes. These genes are the same as those described in several previous pieces of research on hypertrophic pathology in humans. The efficacy of the chemical drug Blebbistatin (BL) on hypertrophy induced ex vivo cultured hearts is studied in this research. BL can inhibit the myosins and the calcium wave in counteracting the hypertrophy status caused by PE. Samples treated with PE, BL and PE simultaneously, or pre/post-treatment with BL, have been analysed for the embryonal gene activation concerning the hypertrophy status. The qRTPCR has shown an inhibitory effect of BL treatments on the microRNAs downregulation with the consequent low expression of essential embryonal genes. In particular, BL seems to be effective in blocking the hyperplasia of the epicardium but less effective in myocardium hypertrophy. The model can make it possible to obtain knowledge on the transduction pathways activated by BL and investigate the potential use of this drug in treating cardiac hypertrophy in humans.


Asunto(s)
Cardiomegalia , Pez Cebra , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Pericardio/metabolismo , Fenilefrina/farmacología
5.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163837

RESUMEN

Male hypogonadism is a disorder characterized by low levels of testosterone, but patients can either show normal insulin (insulin-sensitive (IS)) or over time they can become insulin-resistant (IR). Since the two groups showed different altered metabolisms, testosterone replacement therapy (TRT) could achieve different results. In this paper, we analyzed plasma from 20 IS patients with low testosterone (<8 nmol/L) and HOMAi < 2.5. The samples, pre- and post-treatment with testosterone for 60 days, were analyzed by UHPLC and mass spectrometry. Glycolysis was significantly upregulated, suggesting an improved glucose utilization. Conversely, the pentose phosphate pathway was reduced, while the Krebs cycle was not used. Branched amino acids and carnosine metabolism were positively influenced, while ß-oxidation of fatty acids (FFA) was not activated. Cholesterol, HDL, and lipid metabolism did not show any improvements at 60 days but did so later in the experimental period. Finally, both malate and glycerol shuttle were reduced. As a result, both NADH and ATP were significantly lower. Interestingly, a significant production of lactate was observed, which induced the activation of the Cori cycle between the liver and muscles, which became the main source of energy for these patients without involving alanine. Thus, the treatment must be integrated with chemicals which are not restored in order to reactivate energy production.


Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Carnosina/sangre , Glicerol/sangre , Terapia de Reemplazo de Hormonas/métodos , Hipogonadismo/tratamiento farmacológico , Malatos/sangre , Metabolómica/métodos , Adulto , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Glucólisis , Humanos , Hipogonadismo/sangre , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Vía de Pentosa Fosfato
6.
Antioxidants (Basel) ; 10(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34439445

RESUMEN

Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain (Triticum aestivum) obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly Drosophila melanogaster fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network. Also, in high sucrose-fed Drosophila, Lisosan G reduced the levels of brain ROS and retina peroxynitrite. The analysis of oxidative stress-related metabolites suggested 7,8-dihydrofolate, uric acid, dihydroorotate, γ-L-glutamyl-L-cysteine, allantoin, cysteinyl-glycine, and quinolate as key mediators of Lisosan G-induced inhibition of neuronal ROS, along with the upregulation of glutathione system. Of note, Lisosan G may impact oxidative stress and the ensuing retinal cell death, also independently from autophagy, although the autophagy-ROS cross-talk is critical. This study demonstrated that the continuous supplementation with the alimentary integrator Lisosan G exerts a robust and multifaceted antioxidant effect on retinal neurons, thus providing efficacious neuroprotection of hyperglycemic eye.

7.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166046, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33383105

RESUMEN

Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.


Asunto(s)
Carcinogénesis/genética , MicroARNs/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Animales , Carcinogénesis/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo
8.
Cell Mol Life Sci ; 78(4): 1615-1636, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32749504

RESUMEN

Dystrophin (dys) mutations predispose Duchenne muscular disease (DMD) patients to brain and retinal complications. Although different dys variants, including long dys products, are expressed in the retina, their function is largely unknown. We investigated the putative role of full-length dystrophin in the homeostasis of neuro-retina and its impact on synapsis stabilization and cell fate. Retinas of mdx mice, the most used DMD model which does not express the 427-KDa dys protein (Dp427), showed overlapped cell death and impaired autophagy. Apoptotic neurons in the outer plexiform/inner nuclear layer and the ganglion cell layer had an impaired autophagy with accumulated autophagosomes. The autophagy dysfunction localized at photoreceptor axonal terminals and bipolar, amacrine, and ganglion cells. The absence of Dp427 does not cause a severe phenotype but alters the neuronal architecture, compromising mainly the pre-synaptic photoreceptor terminals and their post-synaptic sites. The analysis of two dystrophic mutants of the fruit fly Drosophila melanogaster, the homozygous DysE17 and DysEP3397, lacking functional large-isoforms of dystrophin-like protein, revealed rhabdomere degeneration. Structural damages were evident in the internal network of retina/lamina where photoreceptors make the first synapse. Both accumulated autophagosomes and apoptotic features were detected and the visual system was functionally impaired. The reactivation of the autophagosome turnover by rapamycin prevented neuronal cell death and structural changes of mutant flies and, of interest, sustained autophagy ameliorated their response to light. Overall, these findings indicate that functional full-length dystrophin is required for synapsis stabilization and neuronal survival of the retina, allowing also proper autophagy as a prerequisite for physiological cell fate and visual properties.


Asunto(s)
Distrofina/genética , Enfermedades de la Retina/genética , Neuronas Retinianas/metabolismo , Animales , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patología , Drosophila melanogaster/genética , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Isoformas de Proteínas/genética , Retina/metabolismo , Retina/patología , Enfermedades de la Retina/etiología , Enfermedades de la Retina/patología , Neuronas Retinianas/patología , Sinapsis/genética
9.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165896, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32681863

RESUMEN

Recent studies have correlated dysregulated miRNA expression with diseased hearts. With the aim of developing an easily manipulated experimental model, phenylephrine (PE) was added to cultured zebrafish hearts to study the expression of miR1 and miR133a by qRT-PCR. Both miRs were downregulated, with greater downregulation leading to higher hypertrophy. The involvement of this miRs was confirmed by the in-vivo inoculation of complementary sequences (AmiR1 and AmiR133a). HSP70 (involved in transporting proteins and in anti-apoptosis processes) was increased in both treatments. Hyperplasia was observed in the epicardium based on WT1 expression (embryonic epicardial cell marker) in both the PE treatment and AmiR133a treatment. The treatment with AmiR1 showed only cardiomyocyte hypertrophy. This ex-vivo model revealed that miR1 and miR133a play a key role in activating early processes leading to myocardium hypertrophy and epicardium hyperplasia and confirmed the expected similarities with hypertrophic disease that occurs in humans.


Asunto(s)
Cardiomegalia/metabolismo , Hipertrofia/metabolismo , MicroARNs/metabolismo , Pericardio/metabolismo , Pez Cebra/metabolismo , Animales , Cardiomegalia/patología , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico/metabolismo , Hipertrofia/patología , Mamíferos , Pericardio/efectos de los fármacos , Pericardio/patología , Fenilefrina/farmacología
10.
Cell Signal ; 70: 109591, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32126264

RESUMEN

The main hallmark of many forms of familiar and sporadic amyotrophic lateral sclerosis (ALS) is a reduction in nuclear TDP-43 protein and its inclusion in cytoplasmic aggregates in motor neurons. In order to understand which cellular and molecular mechanisms underlie the mislocalization of TDP-43, we examined human skin fibroblasts from two individuals with familial ALS, both with mutations in TDP-43, and two individuals with sporadic ALS, both without TDP-43 mutations or mutations in other ALS related genes. We found that all ALS fibroblasts had a partially cytoplasmic localization of TDP-43 and had reduced cell metabolism as compared to fibroblasts from apparently healthy individuals. ALS fibroblasts showed an increase in global protein synthesis and an increase in 4E-BP1 and rpS6 phosphorylation, which is indicative of mTORC1 activity. We also observed a decrease in glutathione (GSH), which suggests that oxidative stress is elevated in ALS. ERK1/2 activity regulated the extent of oxidative stress and the localization of TDP-43 in the cytoplasm in all ALS fibroblasts. Lastly, ALS fibroblasts showed reduced stress granule formation in response to H2O2 stress. In conclusion, these findings identify specific cellular and molecular defects in ALS fibroblasts, thus providing insight into potential mechanisms that may also occur in degenerating motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Piel , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Estrés Oxidativo , Piel/metabolismo , Piel/patología
11.
Cell Signal ; 53: 102-110, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30287278

RESUMEN

Neuroblastoma is the most frequent solid tumor among those diagnosed during infancy and like most tumors, it is characterized by elevated rates of cell proliferation, migration and invasion. RACK1 is among the top 10 genes identified for unfavorable prognosis at 5 years in neuroblastoma cases and its depletion negatively affects proliferation, invasion and migration. Here, we show that the ribosomal localization of RACK1 modulates the proliferation of SH-SY5Y neuroblastoma cells by regulating the expression of cell cycle genes, such as Cyclin D1, D3 and B1 independently of global translation increase. Ribosomal RACK1 is not involved in general protein synthesis, which is instead dependent on total RACK1 and PKC but independent from mTOR. Thus, ribosomal RACK1 may represent a new target to develop more efficient therapies for neuroblastoma treatment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Biosíntesis de Proteínas , Receptores de Cinasa C Activada/genética , Ribosomas/genética , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Humanos
13.
Aquat Toxicol ; 204: 144-159, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30273782

RESUMEN

The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.


Asunto(s)
Apoptosis/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Contaminación Ambiental/análisis , Peces/fisiología , Modelos Biológicos , Animales , Residuos Industriales , Plaguicidas/toxicidad
14.
Rev Neurosci ; 30(1): 45-66, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30067512

RESUMEN

The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/citología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Sistema Nervioso Central/fisiología , Neuronas/citología , Pez Cebra
16.
Exp Cell Res ; 369(1): 166-175, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29807022

RESUMEN

Zebrafish hearts can regenerate through activation of growth factors and trans-differentiation of fibroblasts, epicardial, myocardial and endocardial cells, all positive for GATA4 during the process. A possible model of regeneration of the whole heart and the regenerating cells in ex-vivo culture is presented here by a stimulation of cocktail of growth factors. In ex-vivo growth-factors-supplemented culture the heart regeneration was quite complete without signs of fibrosis. Epicardial- and endocardial-derived cells have been analyzed by electron microscopy evidencing two main types: 1) larger/prismatic and 2) small/rounded. Type (1) showed on the surface protein-sculptures, while type(2) was smooth with sparse globular proteins. To confirm their nature we have contemporarily analyzed their proliferative capability and markers-positivity. The cells treated by growth factors have at least two-fold more proliferation with GATA4-positivity. The type (1) cell evidenced WT1+(marker of embryonic epicardium); the type (2) showed NFTA2+(marker of embryonic endocardium); whereas cTNT-cardiotroponin was negative. Under growth factors stimulation, GATA4+/WT1+ and GATA4+/NFTA2+ could be suitable candidates to be the cells with capability to move in/out of the tissue, probably by using their integrins, and it opens the possibility to have long term selected culture to future characterization.


Asunto(s)
Endocardio/citología , Pericardio/citología , Pez Cebra , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Endocardio/fisiología , Células Endoteliales/citología , Células Endoteliales/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Corazón/fisiología , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Técnicas de Cultivo de Órganos , Pericardio/fisiología , Cultivo Primario de Células , Regeneración/fisiología
17.
Cell Death Discov ; 4: 41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29560280

RESUMEN

Zebrafish could be an interesting translational model to understand and improve the post-infarction trial and possible regeneration in humans. The adult zebrafish is able to regenerate efficiently after resecting nearly 20% of the ventricular apex. This process requires the concert activation of the epicardium and endocardium, as well as trans-differentiation of pre-existing cardiomyocytes that together replace the lost tissue. The molecular mechanisms involved in this activation process are not completely clarified. In this work, in order to investigate if the downregulation of these miRNAs (miRs) are linked with the activation of epicardium, the expressions of miR-133a, b and miR-1 during regeneration were analysed. qPCR analyses in whole-heart, or from distinct dissected epicardial cells comparing to regenerative clot (containing cardiomyocytes, fibroblasts and endocardial cells) by a laser-micro-dissector, have indicated that already at 24 h there is a downregulation of miRs: (1) miR-133a and miR-1 in the epicardium and (2) miR-133b and miR-1 in the regenerative clot. All the miRs remain downregulated until 7 days post-surgery. With the aim to visualize the activations of heart component in combination with miRs, we developed immunohistochemistry using antibodies directed against common markers in mammals as well as zebrafish: Wilms tumour 1 (WT1), a marker of epicardium; heat-shock protein 70 (HSP70), a chaperon activated during regeneration; and the Cardiac Troponin T (cTnT), a marker of differentiated cardiomyocytes. All these markers are directly or indirectly linked to the investigated miRs. WT1 and HSP70 strongly marked the regeneration site just at 2-3 days postventricular resection. In coherence, cTnT intensively marked the regenerative portion from 7 days onwards. miRs-1 and -133 (a,b) have been strongly involved in the activation of epicardium and regenerative clot during the regeneration process in zebrafish. This study can be a useful translational model to understand the early epicardial activation in which miRs-133a and miR-1 seem to play a central role as observed in the human heart.

18.
Biochem Biophys Res Commun ; 495(1): 601-606, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29128355

RESUMEN

Cardiac hypertrophy is determined by an increase of cell size in cardiomyocytes (CMCs). Among the cellular processes regulating the growth of cell size, the increase of protein synthesis rate represents a critical event. Most of translational factors promoting protein synthesis stimulate cardiac hypertrophy. In contrast, activity of translational repressor factors, in cardiac hypertrophy, is not fully determined yet. Here we report the effect of a translational modulator, eIF6/p27BBP in the hypertrophy of neonatal rat CMCs. The increase of eIF6 levels surprisingly prevent the growth of cell size induced by phenylephrine, through a block of protein synthesis without affecting skeletal rearrangement and ANF mRNA expression. Thus, this work uncovers a new translational cardiac regulator independent by other well-known factors such as mTOR signalling or eIF2ß.


Asunto(s)
Tamaño de la Célula/efectos de los fármacos , Factores Eucarióticos de Iniciación/metabolismo , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Fenilefrina , Animales , Animales Recién Nacidos , Cardiomegalia , Células Cultivadas , Células Musculares/patología , Ratas , Regulación hacia Arriba/efectos de los fármacos
19.
Hum Mol Genet ; 26(8): 1407-1418, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158562

RESUMEN

TDP-43 is a well known RNA binding protein involved in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Dementia (FTLD). In physiological conditions, TDP-43 mainly localizes in the nucleus and shuttles, at least in neurons, to the cytoplasm to form TDP-43 RNA granules. In the nucleus, TDP-43 participates to the expression and splicing of RNAs, while in the cytoplasm its functions range from transport to translation of specific mRNAs. However, if loss or gain of these TDP-43 functions are affected in ALS/FTLD pathogenesis is not clear. Here, we report that TDP-43 localizes on ribosomes not only in primary neurons but also in SH-SY5Y human neuroblastoma cells. We find that binding of TDP-43 to the translational machinery is mediated by an interaction with a specific ribosomal protein, RACK1, and that an increase in cytoplasmic TDP-43 represses global protein synthesis, an effect which is rescued by overexpression of RACK1. Ribosomal loss of RACK1, which excludes TDP-43 from the translational machinery, remarkably reduces formation of TDP-43 cytoplasmic inclusions in neuroblastoma cells. Finally, we corroborate the interaction between TDP-43 and RACK1 on polyribosomes of neuroblastoma cells with mis-localization of RACK1 on TDP-43 positive cytoplasmic inclusions in motor neurons of ALS patients. In conclusions, results from this study suggest that TDP-43 represents a translational repressor not only for specific mRNAs but for overall translation and that its binding to polyribosomes through RACK1 may promote, under conditions inducing ALS pathogenesis, the formation of cytoplasmic inclusions.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/biosíntesis , Demencia Frontotemporal/genética , Proteínas de Unión al GTP/biosíntesis , Proteínas de Neoplasias/biosíntesis , Receptores de Superficie Celular/biosíntesis , Esclerosis Amiotrófica Lateral/patología , Núcleo Celular/genética , Citoplasma/genética , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/patología , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Proteínas de Neoplasias/genética , Neuroblastoma , Polirribosomas/genética , Biosíntesis de Proteínas/genética , Empalme del ARN/genética , ARN Mensajero/biosíntesis , Receptores de Cinasa C Activada , Receptores de Superficie Celular/genética , Ribosomas/genética
20.
Stem Cells ; 32(9): 2516-28, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24806549

RESUMEN

Adult neurogenesis is a multistep process regulated by several extrinsic factors, including neurotrophins. Among them, little is known about the role of nerve growth factor (NGF) in the neurogenic niches of the mouse. Here we analyzed the biology of adult neural stem cells (NSCs) from the subventricular zone (SVZ) of AD11 anti-NGF transgenic mice, in which the expression of the recombinant antibody aD11 leads to a chronic postnatal neutralization of endogenous NGF. We showed that AD11-NSCs proliferate 10-fold less, with respect to their control counterparts, and display a significant impairment in their ability to differentiate into ß-tubulin positive neurons. We found a considerable reduction in the number of SVZ progenitors and neuroblasts also in vivo, which correlates with a lower number of newborn neurons in the olfactory bulbs of AD11 mice and a severe deficit in the ability of these mice to discriminate between different odors. We also demonstrated that, in AD11 mice, the morphology of both SVZ-resident and neurosphere-derived astrocytes is significantly altered. We were able to reproduce the AD11 phenotype in vitro, by acutely treating wild type NSCs with the anti-NGF antibody, further demonstrating that both the proliferation and the differentiation defects are due to the NGF deprivation. Consistently, the proliferative impairment of AD11 progenitors, as well as the atrophic morphology of AD11 astrocytes, can be partly rescued in vitro and in vivo by exogenous NGF addition. Altogether, our results demonstrate a causal link between NGF signaling and proper proliferation and differentiation of neural stem cells from the SVZ.


Asunto(s)
Ventrículos Laterales/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Ventrículos Laterales/citología , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Neuronas/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...