Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(17): 5204-5219, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38652048

RESUMEN

Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.


Asunto(s)
Cromosomas de las Plantas , Cromosomas Sexuales , Cromosomas de las Plantas/genética , Cromosomas Sexuales/genética , Plantas/genética , Biología Computacional/métodos
2.
Plant Genome ; : e20413, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087443

RESUMEN

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide. A collection of 283 wild emmer wheat [Triticum turgidum L. subsp. dicoccoides (Körn. ex Asch. & Graebn.) Thell] accessions, representative of the entire Fertile Crescent region where wild emmer naturally occurs, was assembled, genotyped, and characterized for population structure, genetic diversity, and rate of linkage disequilibrium (LD) decay. Then, the collection was employed for mapping Pgt resistance genes, as a proof of concept of the effectiveness of genome-wide association studies in wild emmer. The collection was evaluated in controlled conditions for reaction to six common Pgt pathotypes (TPMKC, TTTTF, JRCQC, TRTTF, TTKSK/Ug99, and TKTTF). Most resistant accessions originated from the Southern Levant wild emmer lineage, with some showing a resistance reaction toward three to six tested races. Association analysis was conducted considering a 12K polymorphic single-nucleotide polymorphisms dataset, kinship relatedness between accessions, and population structure. Eleven significant marker-trait associations (MTA) were identified across the genome, which explained from 17% to up to 49% of phenotypic variance with an average 1.5 additive effect (based on the 1-9 scoring scale). The identified loci were either effective against single or multiple races. Some MTAs colocalized with known Pgt resistance genes, while others represent novel resistance loci useful for durum and bread wheat prebreeding. Candidate genes with an annotated function related to plant response to pathogens were identified at the regions linked to the resistance and defined according to the estimated small LD (about 126 kb), as typical of wild species.

3.
Insect Biochem Mol Biol ; 152: 103877, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403678

RESUMEN

The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.


Asunto(s)
Varroidae , Abejas/genética , Animales , Varroidae/fisiología , Proteómica , Perfilación de la Expresión Génica , Transcriptoma , Olfato
4.
J Exp Bot ; 73(8): 2354-2368, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045170

RESUMEN

Dioecious plants possess diverse sex determination systems and unique mechanisms of reproductive organ development; however, little is known about how sex-linked genes shape the expression of regulatory cascades that lead to developmental differences between sexes. In Silene latifolia, a dioecious plant with stable dimorphism in floral traits, early experiments suggested that female-regulator genes act on the factors that determine the boundaries of the flower whorls. To identify these regulators, we sequenced the transcriptome of male flowers with fully developed gynoecia, induced by rapid demethylation in the parental generation. Eight candidates were found to have a positive role in gynoecium promotion, floral organ size, and whorl boundary, and affect the expression of class B MADS-box flower genes. To complement our transcriptome analysis, we closely examined the floral organs in their native state using field emission environmental scanning electron microscopy, and examined the differences between females and androhermaphrodites in their placenta and ovule organization. Our results reveal the regulatory pathways potentially involved in sex-specific flower development in the classical model of dioecy, S. latifolia. These pathways include previously hypothesized and unknown female-regulator genes that act on the factors that determine the flower boundaries, and a negative regulator of anther development, SUPERMAN-like (SlSUP).


Asunto(s)
Silene , Flores/genética , Óvulo Vegetal/genética , Fenotipo , Plantas , Silene/genética
5.
Front Plant Sci ; 13: 1106164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684759

RESUMEN

Wild emmer wheat is an excellent reservoir of genetic variability that can be utilized to improve cultivated wheat to address the challenges of the expanding world population and climate change. Bearing this in mind, we have collected a panel of 263 wild emmer wheat (WEW) genotypes across the Fertile Crescent. The genotypes were grown in different locations and phenotyped for heading date. Genome-wide association mapping (GWAS) was carried out, and 16 SNPs were associated with the heading date. As the flowering time is controlled by photoperiod and vernalization, we sequenced the VRN1 gene, the most important of the vernalization response genes, to discover new alleles. Unlike most earlier attempts, which characterized known VRN1 alleles according to a partial promoter or intron sequences, we obtained full-length sequences of VRN-A1 and VRN-B1 genes in a panel of 95 wild emmer wheat from the Fertile Crescent and uncovered a significant sequence variation. Phylogenetic analysis of VRN-A1 and VRN-B1 haplotypes revealed their evolutionary relationships and geographic distribution in the Fertile Crescent region. The newly described alleles represent an attractive resource for durum and bread wheat improvement programs.

6.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830166

RESUMEN

The VERNALIZATION1 (VRN1) gene encodes a MADS-box transcription factor and plays an important role in the cold-induced transition from the vegetative to reproductive stage. Allelic variability of VRN1 homoeologs has been associated with large differences in flowering time. The aim of this study was to investigate the genetic variability of VRN1 homoeologs (VRN-A1, VRN-B1 and VRN-D1). We performed an in-depth sequence analysis of VRN1 homoeologs in a panel of 105 winter and spring varieties of hexaploid wheat. We describe the novel allele Vrn-B1f with an 836 bp insertion within intron 1 and show its specific expression pattern associated with reduced heading time. We further provide the complete sequence of the Vrn-A1b allele, revealing a 177 bp insertion in intron 1, which is transcribed into an alternative splice variant. Copy number variation (CNV) analysis of VRN1 homoeologs showed that VRN-B1 and VRN-D1 are present in only one copy. The copy number of recessive vrn-A1 ranged from one to four, while that of dominant Vrn-A1 was one or two. Different numbers of Vrn-A1a copies in the spring cultivars Branisovicka IX/49 and Bastion did not significantly affect heading time. We also report on the deletion of secondary structures (G-quadruplex) in promoter sequences of cultivars with more vrn-A1 copies.


Asunto(s)
Alelos , Dosificación de Gen , Variación Genética , Poliploidía , Proteínas Represoras/genética , Triticum/genética , Empalme Alternativo , Pan , Mutagénesis Insercional , Análisis de Secuencia de ADN
7.
Appl Microbiol Biotechnol ; 105(12): 5189-5200, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34146137

RESUMEN

Microalgal contamination in algal culture is a serious problem hampering the cultivation process, which can result in considerable economic and time losses. With the field of microalgal biotechnology on the rise, development of new tools for monitoring the cultures is of high importance. Here we present a case study of the detection of fast-growing green algae Chlorella vulgaris (as contaminant) in a diatom Phaeodactylum tricornutum culture using various approaches. We prepared mixed cultures of C. vulgaris and P. tricornutum in different cell-to-cell ratios in the range from 1:103 to 1:107. We compared the sensitivity among microscopy, cultivation-based technique, PCR, and qPCR. The detection of C. vulgaris contamination using light microscopy failed in samples containing cell ratios <1:105. Our results confirmed PCR/qPCR to provide the most reliable and sensitive results, with detection sensitivity close to 75 cells/mL. The method was similarly sensitive in a pure C. vulgaris culture as well as in a mixed culture containing 107-times more P. tricornutum cells. A next-generation sequencing analysis revealed a positive discrimination of C. vulgaris during DNA extraction. The method of cultivation media exchange from sea water to fresh water, preferred by the Chlorella contaminant, demonstrated a presence of the contaminant with a sensitivity comparable to PCR approaches, albeit with a much longer detection time. The results suggest that a qPCR/PCR-based approach is the best choice for an early warning in the commercial culturing of microalgae. This method can be conveniently complemented with the substitution-cultivation method to test the proliferating potential of the contaminant. KEY POINTS: • PCR-based protocol developed for detection of Chlorella cells. • Synergy of various approaches shows deeper insight into a presence of contaminants. • Positive/negative discrimination occurs during DNA extraction in mixed cultures. • Newly developed assays ready to use as in diagnostics of contamination.


Asunto(s)
Chlorella vulgaris , Diatomeas , Microalgas , Biomasa , Biotecnología , Agua Dulce
8.
Plant J ; 105(5): 1141-1164, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33484020

RESUMEN

Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Hordeum/genética , Panicum/genética , Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal/genética , Hibridación Fluorescente in Situ
9.
Ann Bot ; 127(1): 33-47, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902599

RESUMEN

BACKGROUND AND AIMS: Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes. METHODS: We flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons. KEY RESULTS: We identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes. CONCLUSIONS: The X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.


Asunto(s)
Rumex , Cromosomas de las Plantas , Evolución Molecular , Hibridación Fluorescente in Situ , Retroelementos , Rumex/genética , Cromosomas Sexuales
10.
BMC Plant Biol ; 20(Suppl 1): 175, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33050875

RESUMEN

BACKGROUND: Polycomb repressive complexes 1 and 2 play important roles in epigenetic gene regulation by posttranslationally modifying specific histone residues. Polycomb repressive complex 2 is responsible for the trimethylation of lysine 27 on histone H3; Polycomb repressive complex 1 catalyzes the monoubiquitination of histone H2A at lysine 119. Both complexes have been thoroughly studied in Arabidopsis, but the evolution of polycomb group gene families in monocots, particularly those with complex allopolyploid origins, is unknown. RESULTS: Here, we present the in silico identification of the Polycomb repressive complex 1 and 2 (PRC2, PRC1) subunits in allohexaploid bread wheat, the reconstruction of their evolutionary history and a transcriptional analysis over a series of 33 developmental stages. We identified four main subunits of PRC2 [E(z), Su(z), FIE and MSI] and three main subunits of PRC1 (Pc, Psc and Sce) and determined their chromosomal locations. We found that most of the genes coding for subunit proteins are present as paralogs in bread wheat. Using bread wheat RNA-seq data from different tissues and developmental stages throughout plant ontogenesis revealed variable transcriptional activity for individual paralogs. Phylogenetic analysis showed a high level of protein conservation among temperate cereals. CONCLUSIONS: The identification and chromosomal location of the Polycomb repressive complex 1 and 2 core components in bread wheat may enable a deeper understanding of developmental processes, including vernalization, in commonly grown winter wheat.


Asunto(s)
Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Simulación por Computador , Evolución Molecular , Perfilación de la Expresión Génica , Filogenia , ARN de Planta , RNA-Seq
11.
Parasit Vectors ; 13(1): 311, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546252

RESUMEN

BACKGROUND: The castor bean tick Ixodes ricinus is an important vector of several clinically important diseases, whose prevalence increases with accelerating global climate changes. Characterization of a tick life-cycle is thus of great importance. However, researchers mainly focus on specific organs of fed life stages, while early development of this tick species is largely neglected. METHODS: In an attempt to better understand the life-cycle of this widespread arthropod parasite, we sequenced the transcriptomes of four life stages (egg, larva, nymph and adult female), including unfed and partially blood-fed individuals. To enable a more reliable identification of transcripts and their comparison in all five transcriptome libraries, we validated an improved-fit set of five I. ricinus-specific reference genes for internal standard normalization of our transcriptomes. Then, we mapped biological functions to transcripts identified in different life stages (clusters) to elucidate life stage-specific processes. Finally, we drew conclusions from the functional enrichment of these clusters specifically assigned to each transcriptome, also in the context of recently published transcriptomic studies in ticks. RESULTS: We found that reproduction-related transcripts are present in both fed nymphs and fed females, underlining the poorly documented importance of ovaries as moulting regulators in ticks. Additionally, we identified transposase transcripts in tick eggs suggesting elevated transposition during embryogenesis, co-activated with factors driving developmental regulation of gene expression. Our findings also highlight the importance of the regulation of energetic metabolism in tick eggs during embryonic development and glutamate metabolism in nymphs. CONCLUSIONS: Our study presents novel insights into stage-specific transcriptomes of I. ricinus and extends the current knowledge of this medically important pathogen, especially in the early phases of its development.


Asunto(s)
Perfilación de la Expresión Génica , Ixodes/crecimiento & desarrollo , Ixodes/genética , Animales , Conducta Alimentaria , Femenino , Estadios del Ciclo de Vida , Ninfa/crecimiento & desarrollo , Reproducción/genética
12.
Front Plant Sci ; 11: 205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180787

RESUMEN

The genus Silene includes a plethora of dioecious and gynodioecious species. Two species, Silene latifolia (white campion) and Silene dioica (red campion), are dioecious plants, having heteromorphic sex chromosomes with an XX/XY sex determination system. The X and Y chromosomes differ mainly in size, DNA content and posttranslational histone modifications. Although it is generally assumed that the sex chromosomes evolved from a single pair of autosomes, it is difficult to distinguish the ancestral pair of chromosomes in related gynodioecious and hermaphroditic plants. We designed an oligo painting probe enriched for X-linked scaffolds from currently available genomic data and used this probe on metaphase chromosomes of S. latifolia (2n = 24, XY), S. dioica (2n = 24, XY), and two gynodioecious species, S. vulgaris (2n = 24) and S. maritima (2n = 24). The X chromosome-specific oligo probe produces a signal specifically on the X and Y chromosomes in S. latifolia and S. dioica, mainly in the subtelomeric regions. Surprisingly, in S. vulgaris and S. maritima, the probe hybridized to three pairs of autosomes labeling their p-arms. This distribution suggests that sex chromosome evolution was accompanied by extensive chromosomal rearrangements in studied dioecious plants.

13.
Sci Rep ; 9(1): 1045, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705300

RESUMEN

Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system.


Asunto(s)
Cromosomas de las Plantas/genética , Silene/genética , Teorema de Bayes , Ligamiento Genético/genética , Filogenia
14.
N Biotechnol ; 48: 20-28, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29656128

RESUMEN

Silene latifolia serves as a model species to study dioecy, the evolution of sex chromosomes, dosage compensation and sex-determination systems in plants. Currently, no protocol for genetic transformation is available for this species, mainly because S. latifolia is considered recalcitrant to in vitro regeneration and infection with Agrobacterium tumefaciens. Using cytokinins and their synthetic derivatives, we markedly improved the efficiency of regeneration. Several agrobacterial strains were tested for their ability to deliver DNA into S. latifolia tissues leading to transient and stable expression of the GUS reporter. The use of Agrobacterium rhizogenes strains resulted in the highest transformation efficiency (up to 4.7% of stable transformants) in hairy root cultures. Phenotypic and genotypic analyses of the T1 generation suggested that the majority of transformation events contain a small number of independent T-DNA insertions and the transgenes are transmitted to the progeny in a Mendelian pattern of inheritance. In short, we report an efficient and reproducible protocol for leaf disc transformation and subsequent plant regeneration in S. latifolia, based on the unique combination of infection with A. rhizogenes and plant regeneration from hairy root cultures using synthetic cytokinins. A protocol for the transient transformation of S.latifolia protoplasts was also developed and applied to demonstrate the possibility of targeted mutagenesis of the sex linked gene SlAP3 by TALENs and CRISPR/Cas9.


Asunto(s)
Agrobacterium/genética , Silene/genética , Silene/microbiología , Transformación Genética , Sistemas CRISPR-Cas , Cromosomas de las Plantas/genética , ADN Bacteriano/genética , Evolución Molecular , Expresión Génica , Genes Reporteros , Técnicas Genéticas , Modelos Genéticos , Plantas Modificadas Genéticamente , Regeneración/genética , Silene/fisiología , Nucleasas de los Efectores Tipo Activadores de la Transcripción
15.
Nat Plants ; 4(9): 677-680, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104649

RESUMEN

Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2-4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.


Asunto(s)
Cromosomas de las Plantas , Compensación de Dosificación (Genética) , Impresión Genómica , Cromosomas Sexuales , Regulación de la Expresión Génica de las Plantas/genética , Silene/genética , Silene/fisiología
16.
Ann Bot ; 122(7): 1085-1101, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-30032185

RESUMEN

Background: The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope: This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions: We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Flores/crecimiento & desarrollo , Desarrollo de la Planta/genética , Plantas/genética , Evolución Biológica , Flores/genética , Cromosomas Sexuales
17.
Genes (Basel) ; 8(11)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104214

RESUMEN

In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss the impact of repetitive sequences on the structure and dynamics of sex chromosomes with specific focus on Rumex acetosa and Silene latifolia. Recent papers showed that both the expansion and shrinkage of the Y chromosome is influenced by sex-specific regulation of repetitive DNA spread. We present a view that the dynamics of Y chromosome formation is an interplay of genetic and epigenetic processes.

18.
Genom Data ; 13: 15-17, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28626638

RESUMEN

In the present study, we used Illumina sequencing technology (HiSeq 2000) to sequence the transcriptome of barley (Hordeum vulgare L., cv. Morex) under three different heavy metal stress conditions: copper, zinc and cadmium. For each of those metals, the concentration causing a 50% inhibitory effect for root growth (EC50) was determined. We sequenced the total RNA of both roots and shoots from barley with and without heavy metal treatments in three replicates. Raw reads of the transcriptome project have been deposited in NCBI's BioProject accession number PRJNA382490. The obtained transcriptomic data will be useful for further studies focusing on heavy metal tolerance and comparative transcriptome analysis in barley.

19.
Plant Cell ; 29(6): 1196-1217, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28522548

RESUMEN

We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).


Asunto(s)
Ingeniería Genética/métodos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Hordeum/genética , Solanum lycopersicum/genética , ARN de Planta/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Triticum/genética
20.
Genom Data ; 11: 118-119, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28180085

RESUMEN

Silene dioica is a dioecious plant of the family Caryophyllaceae. In the present study, we used Illumina sequencing technology (MiSeq) to sequence, de novo assembly and annotate the transcriptomes of male and female copper tolerant S. dioica individuals. We sequenced the normalized mRNA of roots, shoots, flower buds and flowers for each sex. Raw reads of the transcriptome assembly project for S. dioica male and female individual have been deposited in NCBI's Sequence Read Archive (SRA) database with the accession number SRP094611. The Trinity and Detonate program was used to de novo assembly 92,347 transcripts for male and 94,757 transcripts for female transcriptome. The assembled transcriptome sequences for S. dioica male and female individuals can be accessed at NCBI with the following accession numbers: GFCG00000000 (male); GFCH00000000 (female). The obtained transcriptomic data will be useful for further studies focusing on copper tolerance, comparative transcriptome analysis with other Silene species and sex chromosomes evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...