RESUMEN
Since Coronavirus disease 2019 (COVID-19) still presents a considerable threat, it is beneficial to provide therapeutic supplements against it. In this respect, glycoprotein lactoferrin (LF) and lactoferricin (LFC), a natural bioactive peptide yielded upon digestion from the N-terminus of LF, are of utmost interest, since both have been shown to reduce infections of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, in particular via blockade of the virus priming and binding. Here, we, by means of biochemical and biophysical methods, reveal that LF directly binds to the S-protein of SARS-CoV-2. We determined thermodynamic and kinetic characteristics of the complex formation and mapped the mutual binding sites involved in this interaction, namely the N-terminal region of LF and the receptor-binding domain of the S-protein (RBD). These results may not only explain many of the observed protective effects of LF and LFC in SARS-CoV-2 infection but may also be instrumental in proposing potent and cost-effective supplemental tools in the management of COVID-19.
RESUMEN
Laboratory production of recombinant mammalian proteins, particularly antibodies, requires an expression pipeline assuring sufficient yield and correct folding with appropriate posttranslational modifications. Transient gene expression (TGE) in the suspension-adapted Chinese Hamster Ovary (CHO) cell lines has become the method of choice for this task. The antibodies can be secreted into the media, which facilitates subsequent purification, and can be glycosylated. However, in general, protein production in CHO cells is expensive and may provide variable outcomes, namely in laboratories without previous experience. While achievable yields may be influenced by the nucleotide sequence, there are other aspects of the process which offer space for optimization, like gene delivery method, cultivation process or expression plasmid design. Polyethylenimine (PEI)-mediated gene delivery is frequently employed as a low-cost alternative to liposome-based methods. In this work, we are proposing a TGE platform for universal medium-scale production of antibodies and other proteins in CHO cells, with a novel expression vector allowing fast and flexible cloning of new genes and secretion of translated proteins. The production cost has been further reduced using recyclable labware. Nine days after transfection, we routinely obtain milligrams of antibody Fabs or human lactoferrin in a 25 mL culture volume. Potential of the platform is established based on the production and crystallization of antibody Fabs and their complexes.
RESUMEN
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
RESUMEN
Tau protein is an intrinsically disordered protein. Its physiological state is best described as a conformational ensemble (CE) of metastable structures interconverting on the local and molecular scale. The monoclonal antibody DC39C recognizes a linear C-terminal tau epitope, and as the tau interaction partner, its binding parameters report about tau CE. Association kinetics of DC39C binding, together with crosslinking mass spectrometry, show differences in the accessibility of the C terminus in CEs of tau isoforms. Furthermore, removal of the C terminus accelerated the aggregation kinetics of three-repeat tau proteins. Our results suggest a novel mechanism of splicing-driven regulation of the tau C-terminal domain with consequences on the specific roles of tau isoforms in microtubule assembly and pathological aggregation.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas tau , Proteínas Intrínsecamente Desordenadas/química , Cinética , Conformación Proteica , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismoRESUMEN
There are many fluorescence-based applications that can be used to characterize molecular interactions. However, available methods often depend on site-specific labeling techniques or binding-induced changes in conformation or size of the probed target molecule. To overcome these limitations, we applied a ratiometric dual-emission approach that quantifies ligand-induced spectral shifts with sub-nanometer sensitivity. The use of environment-sensitive near-infrared dyes with the method we describe enables affinity measurements and thermodynamic characterization without the explicit need for site-specific labeling or ligand-induced conformational changes. We demonstrate that in-solution spectral shift measurements enable precise characterization of molecular interactions for a variety of biomolecules, including proteins, antibodies, and nucleic acids. Thereby, the described method is not limited to a subset of molecules since even the most challenging samples of research and drug discovery projects like membrane proteins and intrinsically disordered proteins can be analyzed.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/metabolismo , Ligandos , Conformación Molecular , Espectrometría de Fluorescencia/métodos , TermodinámicaRESUMEN
BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Antineoplásicos Inmunológicos/inmunología , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Deriva y Cambio Antigénico , Antineoplásicos Inmunológicos/uso terapéutico , COVID-19/virología , Modelos Animales de Enfermedad , Humanos , Cinética , Pulmón/patología , Ratones , Mutación , Pruebas de Neutralización , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19RESUMEN
Intrinsically disordered proteins are flexible molecules with important physiological functions. Their mode of action often involves short segments, called linear motifs, which may exhibit distinct structural propensities. Tau is intrinsically disordered, microtubule-associated protein involved in the pathogenesis of various tauopathies. In this review we analyze the collection of 3D structures of tau local linear motifs gained from the deposited structures of tau complexes with various binding partners as well as of tau-tau complexes; determined by X-ray and electron crystallography, single-particle electron microscopy, NMR spectroscopy and molecular dynamics simulations. Insights into the partially stabilized conformations of tau linear motifs are valuable for understanding the physiological and pathological processes involving tau protein.
Asunto(s)
Simulación de Dinámica Molecular , Proteínas tau , Proteínas tau/metabolismoRESUMEN
Oxandrolone, a synthetic testosterone analog, is used for the treatment of several diseases associated with weight loss. Unfortunately, oxandrolone is abused by many athletes and bodybuilders due to its strong anabolic effect. We have developed and validated a highly sensitive and rapid on-line SPE-UHPLC-MS/MS method for the determination of oxandrolone and simultaneous identification of its major metabolite 17-epi-oxandrolone in urine matrices. Enrichment of the analytes via an integrated solid-phase extraction was achieved using an Acquity UPLC BEH C18 Column. Subsequently, the chromatographic separation of the on-line preconcentrated sample fraction was achieved using an Acquity HSS T3 C18 Column. For the structural identification of these analytes, a high-resolution mass spectrometer Synapt-G2Si coupled to the Acquity M-class nano-LC system with ionKey source was used. A highly sensitive determination of oxandrolone was achieved using a tandem quadrupole mass spectrometer XEVO TQD. The method was successfully validated in the linear range of oxandrolone from 81.63 pg·mL-1 (limit of quantification, LOQ) to 5000 pg·mL-1 in the human urine matrix. It was applied to the analysis of real urine samples obtained from a healthy volunteer after the oral administration of one dose (10 mg) of oxandrolone. Concentration vs. time dependence was tested in the time interval of 4 h-12 days (after oral administration) to demonstrate the ability of the method to detect the renal elimination of oxandrolone from the human body. Favorable performance parameters along with successful application indicate the usefulness of the proposed method for its routine use in antidoping control labs.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Oxandrolona/metabolismo , Oxandrolona/orina , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Urinálisis/métodos , Humanos , Oxandrolona/aislamiento & purificaciónRESUMEN
Immunotherapies targeting pathological tau have recently emerged as a promising approach for treatment of neurodegenerative disorders. We have previously showed that the mouse antibody DC8E8 discriminates between healthy and pathological tau, reduces tau pathology in murine tauopathy models and inhibits neuronal internalization of AD tau species in vitro.Here we show, that DC8E8 and antibodies elicited against the first-in-man tau vaccine, AADvac1, which is based on the DC8E8 epitope peptide, both promote uptake of pathological tau by mouse primary microglia. IgG1 and IgG4 isotypes of AX004, the humanized versions of DC8E8, accelerate tau uptake by human primary microglia isolated from post-mortem aged and diseased brains. This promoting activity requires the presence of the Fc-domain of the antibodies.The IgG1 isotype of AX004 showed greater ability to promote tau uptake compared to the IgG4 isotype, while none of the antibody-tau complexes provoked increased pro-inflammatory activity of microglia. Our data suggest that IgG1 has better suitability for therapeutic development.
Asunto(s)
Vacunas contra el Alzheimer/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Encefalitis/inmunología , Microglía/inmunología , Proteínas tau/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Monoclonales Humanizados/metabolismo , Transporte Biológico , Células Cultivadas , Encefalitis/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Adulto Joven , Proteínas tau/metabolismoRESUMEN
Pathologically altered tau protein is a common denominator of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Therefore, promising immunotherapeutic approaches target and eliminate extracellular pathogenic tau species, which are thought to be responsible for seeding and propagation of tau pathology. Tau isoforms in misfolded states can propagate disease pathology in a template-dependent manner, proposed to be mediated by the release and internalization of extracellular tau. Monoclonal antibody DC8E8, binding four highly homologous and independent epitopes in microtubule-binding domain (MTBD) of diseased tau, inhibits tau-tau interaction, discriminates between healthy and pathologically truncated tau and reduces tau pathology in animal model in vivo. Here, we show that DC8E8 antibody acts via extracellular mechanism and does not influence viability and physiological functions of neurons. Importantly, in vitro functional assays showed that DC8E8 recognises pathogenic tau proteins of different size and origin, and potently blocks their entry into neurons. Next, we examined the mechanisms by which mouse antibody DC8E8 and its humanized version AX004 effectively block the neuronal internalization of extracellular AD tau species. We determined a novel mode of action of a therapeutic candidate antibody, which potently inhibits neuronal internalization of AD tau species by masking of epitopes present in MTBD important for interaction with neuron surface Heparan Sulfate Proteoglycans (HSPGs). We show that interference of tau-heparane sulfate interaction with DC8E8 antibody via steric hindrance represents an efficient and important therapeutic approach halting tau propagation.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteoglicanos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/administración & dosificación , Sitios de Unión/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Sistemas de Liberación de Medicamentos/tendencias , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/genética , Espacio Extracelular/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Neuronas/efectos de los fármacos , Embarazo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas tau/genéticaRESUMEN
Tau protein plays a major role in the pathogenesis of Alzheimer's disease. Despite many decades of intensive research, the cause of the conformational switch that leads to the remodeling of the highly flexible conformational ensemble of intrinsically disordered protein tau into insoluble filaments is still elusive. We show here that truncation of tau may play a causative role in this conformational change, as evidenced by results obtained from in vitro experiments and from transgenic animal models. This conformational change is a common denominator of pathological tau protein assemblies, and a salient drug target. The long-running research of truncated tau has led to the generation of the first active tau vaccine that has entered clinical trials.
Asunto(s)
Tauopatías/metabolismo , Tauopatías/terapia , Proteínas tau/metabolismo , Animales , Humanos , Conformación ProteicaRESUMEN
The plasminogen system is essential for dissolution of fibrin clots, and in addition, it is involved in a wide variety of other physiological processes, including proteolytic activation of growth factors, cell migration, and removal of protein aggregates. On the other hand, uncontrolled plasminogen activation contributes to many pathological processes (e.g. tumor cells' invasion in cancer progression). Moreover, some virulent bacterial species (e.g. Streptococci or Borrelia) bind human plasminogen and hijack the host's plasminogen system to penetrate tissue barriers. Thus, the conversion of plasminogen to the active serine protease plasmin must be tightly regulated. Here, we show that human lactoferrin, an iron-binding milk glycoprotein, blocks plasminogen activation on the cell surface by direct binding to human plasminogen. We mapped the mutual binding sites to the N-terminal region of lactoferrin, encompassed also in the bioactive peptide lactoferricin, and kringle 5 of plasminogen. Finally, lactoferrin blocked tumor cell invasion in vitro and also plasminogen activation driven by Borrelia Our results explain many diverse biological properties of lactoferrin and also suggest that lactoferrin may be useful as a potential tool for therapeutic interventions to prevent both invasive malignant cells and virulent bacteria from penetrating host tissues.
Asunto(s)
Borrelia/metabolismo , Fibrinolisina/metabolismo , Fibrinólisis , Lactoferrina/metabolismo , Plasminógeno/antagonistas & inhibidores , Streptococcus/metabolismo , Movimiento Celular , Células Cultivadas , Cristalografía por Rayos X , Humanos , Lactoferrina/química , Lactoferrina/genética , Plasminógeno/metabolismo , Conformación ProteicaRESUMEN
The Alzheimer's disease-associated protein tau is an intrinsically disordered protein with no preferred structure in solution. Under physiological conditions, tau binds to microtubules and regulates their dynamics, whereas during the development of neurodegeneration tau dissociates from microtubules, misfolds and creates highly insoluble deposits. To elucidate the determinants of tau-protein misfolding, tau peptides from microtubule-binding motifs were crystallized in complexes with Fab fragments of specific monoclonal antibodies. The crystals diffracted to 1.69â Å resolution and gave complete data sets using a synchrotron X-ray source. Molecular replacement was used to solve the phase problem.
Asunto(s)
Fragmentos Fab de Inmunoglobulinas/química , Proteínas tau/química , Secuencias de Aminoácidos , Anticuerpos Monoclonales , Cristalización , Cristalografía por Rayos X , Fragmentos Fab de Inmunoglobulinas/inmunología , Microtúbulos/química , Microtúbulos/metabolismo , Estructura Terciaria de Proteína , Proteínas tau/inmunología , Proteínas tau/metabolismoRESUMEN
The major constituent of the Alzheimer's disease paired helical filaments (PHF) core is the intrinsically disordered protein (IDP) tau. Globular binding partners, e.g. monoclonal antibodies, can stabilize the fold of disordered tau in complexes. A previously published structure of a proteolytically generated tau fragment in a complex with the PHF-specific monoclonal antibody MN423 revealed a turn-like structure of the PHF core C-terminus [Sevcik et al. (2007). FEBS Lett. 581, 5872-5878]. To examine the structures of longer better-defined PHF segments, crystals of the MN423 Fab fragment were grown in the presence of two synthetic peptides derived from the PHF core C-terminus. For each, X-ray diffraction data were collected at 100â K at a synchrotron source and initial phases were obtained by molecular replacement.