Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Phys Chem B ; 128(14): 3320-3328, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38447080

RESUMEN

Protein self-assembly plays an important role in biological systems, accounting for the formation of mesoscopic structures that can be highly symmetric as in the capsid of viruses or disordered as in molecular condensates or exhibit a one-dimensional fibrillar morphology as in amyloid fibrils. Deposits of the latter in tissues of individuals with degenerative diseases like Alzheimer's and Parkinson's has motivated extensive efforts to understand the sequence of molecular events accounting for their formation. These studies aim to identify on-pathway intermediates that may be the targets for therapeutic intervention. This detailed knowledge of fibril formation remains obscure, in part due to challenges with experimental analyses of these processes. However, important progress is being achieved for short amyloid peptides due to advances in our ability to perform completely unbiased all-atom simulations of the self-assembly process. This perspective discusses recent developments, their implications, and the hurdles that still need to be overcome to further advance the field.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Humanos , Amiloide/química , Péptidos beta-Amiloides/química
2.
Angiology ; : 33197231226275, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38171493

RESUMEN

Cardiovascular and bone diseases contribute independently to mortality and global health. The exact mechanisms involved in the pathophysiology shared between bone and vascular diseases are not well defined. Endothelial cells and osteoblasts communicate during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. One shared mechanism may involve osteoprotegerin (OPG) and its ligand Receptor Activator of NF-κB Ligand (RANKL). The RANKL/OPG ratio is an important modulator for the skeletal, immunological, and vascular systems. OPG levels are elevated due to either osteogenic causes or inflammatory responses in the vasculature. The data obtained from clinical and in vitro studies support the role of the RANKL/OPG ratio as a potential marker for the progression of endothelial damage. Therefore, determining the therapeutic approaches for the targeting RANKL/OPG ratio and evaluating its usage as a biomarker in cardiovascular and bone pathophysiology are needed. By integrating the protective and disease-causing role of OPG with its ligand, this review outlines the role of the RANKL/OPG ratio at the molecular level. We also consider targeted therapeutic approaches.

3.
J Biol Inorg Chem ; 28(2): 213-224, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36656371

RESUMEN

Guanine-rich quadruplex DNA (G-quadruplex) is of interest both in cell biology and nanotechnology. Its biological functions necessitate a G-quadruplex to be stabilized against escape of the monovalent metal cations. The potassium ion ([Formula: see text]) is particularly important as it experiences a potential energy barrier while it enters and exits the G-quadruplex systems which are normally found in human telomere. In the present work, we analyzed the time it takes for the [Formula: see text] cations to get in and out of the G-quadruplex. Our time estimate is based on entropic tunneling time-a time formula which gave biologically relevant results for DNA point mutation by proton tunneling. The potential energy barrier experienced by [Formula: see text] ions is determined from a quantum mechanical simulation study, Schrodinger equation is solved using MATLAB, and the computed eigenfunctions and eigenenergies are used in the entropic tunneling time formula to compute the time delay and charge accumulation rate during the tunneling of [Formula: see text] in G-quadruplex. The computations have shown that ion tunneling takes picosecond times. In addition, average [Formula: see text] accumulation rate is found to be in the picoampere range. Our results show that time delay during the [Formula: see text] ion tunneling is in the ballpark of the conformational transition times in biological systems, and it could be an important parameter for understanding its biological role in human DNA as well as for the possible applications in biotechnology. To our knowledge, for the first time in the literature, time delay during the ion tunneling from and into G-quadruplexes is computed.


Asunto(s)
G-Cuádruplex , Humanos , Guanina/química , ADN/genética , ADN/química , Cationes/química , Telómero/genética
4.
Cytotechnology ; 74(6): 635-655, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36389283

RESUMEN

Lentivirus and adeno-associated viruses are invaluable tools for biotechnology applications due to their genetic material delivery abilities both in vitro and in vivo. However, their large-scale productions with Good Manufacturing Practices yield low efficiency when adherent and serum dependent HEK293 (Human Embryonic Kidney) cells are used as the host. To increase production efficiency, HEK293 cells are adapted to grow in suspension using commercially available and chemically defined serum-free mediums. Suspended cells can be transiently transfected for viral vector production; however, significant improvements are still needed to increase yield and thereby cost effectiveness. Here, we evaluated four most preferred commercially available mediums that are IVY, FreeStyle293, LV-MAX, and BalanCD HEK293 for the transient transfection feasibility of lentiviral (LV) and adeno-associated virus serotype 2 (AAV2) production in FlorabioHEK293 suspension cells. The highest transfection efficiency was over 90% and obtained by using polyethyleneimine (PEI) 25 K and by media adaptation in IVY without using any transfection enhancer. For the first time the feasibility of HEK293 cells, which were adapted to grow in suspension culture by Florabio and IVY media, were tested for virus production. This study demonstrates the best transfection medium for scalable and optimized production of Lentivirus and Adeno-Associated Virus in suspended HEK293 cell culture. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-022-00551-1.

5.
ACS Appl Mater Interfaces ; 14(36): 40688-40697, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36048001

RESUMEN

Circulating tumor cells (CTCs) are essential biomarkers for cancer diagnosis. Although various devices have been designed to detect, enumerate, and isolate CTCs from blood, some of these devices could have some drawbacks, such as the requirement of labeling, long process time, and high cost. Here, we present a microfluidic device based on the concept of "hydrodynamic cavitation-on-chip (HCOC)", which can detect CTCs in the order of minutes. The working principle relies on the difference of the required inlet pressure for cavitation inception of working fluids when they pass through the microfluidic device. The interface among the solid/floating particles, liquid, and vapor phases plays an important role in the strength of the fluid to withstand the rupture and cavitation formation. To this end, four experimental groups, including the "cell culture medium", "medium + Jurkat cells", "medium + Jurkat cells + CTCs", and "medium + CTCs", were tested as a proof of concept with two sets of fabricated microfluidic chips with the same geometrical dimensions, in which one set contained structural sidewall roughness elements. Jurkat cells were used to mimic white blood cells, and MDA-MB-231 cells were spiked into the medium as CTCs. Accordingly, the group with CTCs led to detectable earlier cavitation inception. Additionally, the effect of the CTC concentration on cavitation inception and the effect of the presence of sidewall roughness elements on the earlier inception were evaluated. Furthermore, CTC detection tests were performed with cancer cell lines spiked in blood samples from healthy donors. The results showed that this approach, HCOC, could be a potential approach to detect the presence of CTCs based on cavitation phenomenon and offer a cheap, user-friendly, and rapid tool with no requirement for any biomarker or extensive films acting as a biosensor. This approach also possesses straightforward application procedures to be employed for detection of CTCs.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular/métodos , Humanos , Hidrodinámica , Dispositivos Laboratorio en un Chip , Células Neoplásicas Circulantes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA