Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(46): 54060-54072, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37953492

RESUMEN

Large-scale preparation of liquid-like coatings with perfect transparency via solventless and room-temperature processes using low-cost and biocompatible materials is of tremendous interest for a broad range of applications. Here, we present a mechanochemical activation strategy for solventless grafting of poly(dimethylsiloxane) (PDMS) onto glass, silicon wafers, and ceramics. Activation is achieved via ball milling PDMS without using any solvents or additives prior to application. Ball milling results in chain scission and generation of free radicals, allowing room-temperature grafting at durations ≤1 h. The deposition of ball-milled PDMS can be facilitated by brushing or drop-casting, enabling large-scale applications. The resulting surfaces facilitate the sliding of droplets at angles <20° for liquids with surface tension ranging from 22 to 73 mN/m. An important application for public health is generating anti-biofouling coatings on sanitary ware. For example, PDMS-grafted surfaces prepared on a regular-size toilet bowl exhibit a 105-fold decrease in the attachment of bacteria from urine. These findings highlight the significant potential of mechanochemical processes for the practical preparation of liquid-like surfaces.

2.
Langmuir ; 39(9): 3194-3203, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36812456

RESUMEN

The broad application potential of superhydrophobic coatings is limited by the usage of environment-threatening materials and poor durability. The nature-inspired design and fabrication of self-healing coatings is a promising approach for addressing these issues. In this study, we report a fluorine-free and biocompatible superhydrophobic coating that can be thermally healed after abrasion. The coating is composed of silica nanoparticles and carnauba wax, and the self-healing is based on surface enrichment of wax in analogy to the wax secretion in plant leaves. The coating not only exhibits fast self-healing, just in 1 min under moderate heating, but also displays increased water repellency and thermal stability after healing. The rapid self-healing ability of the coating is attributed to the relatively low melting point of carnauba wax and its migration to the surface of the hydrophilic silica nanoparticles. The dependence of self-healing on the size and loading of particles provides insights into the process. Furthermore, the coating exhibits high levels of biocompatibility where the viability of fibroblast L929 cells was ∼90%. The presented approach and insights provide valuable guidelines in the design and fabrication of self-healing superhydrophobic coatings.


Asunto(s)
Nanopartículas , Propiedades de Superficie , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Dióxido de Silicio/química , Hojas de la Planta/química
3.
ACS Omega ; 7(30): 26504-26513, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936466

RESUMEN

Microorganisms such as pathogenic bacteria, fungi, and viruses pose a serious threat to human health and society. Surfaces are one of the major pathways for the transmission of infectious diseases. Therefore, imparting antipathogenic properties to these surfaces is significant. Here, we present a rapid, one-step approach for practical fabrication of antimicrobial and antifungal surfaces using an eco-friendly and low-cost reducing agent, the extract of Cedrus libani. Copper oxide nanoparticles were grown in situ on the surface of print paper and fabric in the presence of the copper salt and extract, without the use of any additional chemicals. The morphology and composition of the grown nanoparticles were characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction techniques. The analysis revealed that the grown particles consist of mainly spherical CuO nanoparticles with an average size of ∼14 nm and its clusters with an average size of ∼700 nm. The in situ growth process enables strong bonding of the nanoparticles to the surface, resulting in enhanced durability against wear and tear. Moreover, the fabricated surface shows excellent growth inhibition ability and bactericidal activity against both gram-negative and gram-positive bacteria, Escherichia coli and Staphylococcus aureus, as well as antifungal activity against Candida albicans, a common pathogenic fungus. The ability to grow copper oxide nanoparticles on different surfaces paves the way for a range of applications in wound dressings, masks, and protective medical equipment.

4.
Colloids Surf B Biointerfaces ; 205: 111864, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34049000

RESUMEN

Durable and environment friendly superhydrophobic surfaces are needed for a set of important applications. Biomedical applications, in particular, impose stringent requirements on the biocompatibility of the materials used in the fabrication of superhydrophobic surfaces. In this study, we demonstrate the fabrication of mechanically durable superhydrophobic surfaces via an in-situ structuring strategy starting from natural carnauba wax and biocompatible polydimethylsiloxane (PDMS) materials. The transfer of the structure of the paper to a free-standing PDMS film provided the microscale structure. On top of this structured surface, the wax was spray-coated, initially resulting in a relatively homogeneous film with limited liquid repellence. The key in achieving superhydrophobicity was rubbing the surface for in-situ generation of a finely textured wax coating with a water contact angle of 169° and a sliding angle of 3°. The hierarchically structured surface exhibits mechanical robustness as demonstrated with water impact and linear abrasion tests. We finally demonstrate repellence of the surfaces against a range of blood products including platelet suspension, erythrocyte suspension, fresh plasma, and whole blood.


Asunto(s)
Materiales Biocompatibles , Nanopartículas , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...