Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 50: 356-361, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30262304

RESUMEN

Axillary seabream (Pagellus acarne) farmed in a copper alloy mesh pen and wild individuals of P. acarne aggregated near the copper-alloy cages presented higher concentrations of trace metals in the liver, skin and gills than in fish muscle tissues in two batches of small and large fish sizes. Elevated mean levels of metals (mg kg-1) in muscle tissues in both small and large fish size groups were observed in the rank order of Zn(3.43) > Fe(3.01) > Cu(0.59) > Mn(0.13) and Fe(3.82) > Zn(3.32) > Cu(0.62) > Mn(0.17) for copper cage-farmed fish, relative to ranked mean levels for Zn(2.64) > Fe(1.95) > Cu(0.25) > Mn(0.09) and Fe(5.79) > Zn(3.58) > Cu(0.58) > Mn(0.28) for the copper cage-aggregated wild fish. Nevertheless, trace metal concentrations in fish harvested from the copper cage or those of the cage-aggregated wild individuals in both size groups were far below maximum levels of seafood safety recommended by USEPA and FAO/WHO. Target hazard quotients, calculated to estimate the non-carcinogenic health risks of metals by consuming these fish, were below "1″ (THQ < 1), indicating that there were no potential health risks for humans when consuming copper-caged fish or wild-caught individuals aggregated around the copper mesh pen, with respect to the limits suggested by US Food and Drug Administration and EU Regulations for Seafood Consumption.


Asunto(s)
Aleaciones/química , Cobre/análisis , Dorada , Alimentos Marinos/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Humanos
2.
Sensors (Basel) ; 17(8)2017 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-28758936

RESUMEN

This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...