Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 72(2): 472-81, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22127926

RESUMEN

cJun NH(2)-terminal kinase (JNK) signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study, we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial cells. In the setting of breast cancer development, JNK1/2 deficiency significantly increased tumor formation. Together, these findings established that JNK signaling is required for normal mammary gland development and that it has a suppressive role in mammary tumorigenesis.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/crecimiento & desarrollo , Neoplasias Mamarias Experimentales/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Movimiento Celular/fisiología , Femenino , Expresión Génica , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/genética
2.
Mol Cell Biol ; 31(7): 1565-76, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282468

RESUMEN

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these data establish that JNK plays a key role in Ras-induced tumorigenesis.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Lesiones Precancerosas/enzimología , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Apoptosis , Cadherinas/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/patología , Inhibición de Contacto , Fibroblastos/metabolismo , Ratones , Transducción de Señal , Estrés Fisiológico , Ensayo de Tumor de Célula Madre , Proteína p53 Supresora de Tumor/metabolismo
3.
Nat Cell Biol ; 12(12): 1242-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21102438

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades propagate a variety of cellular activities. Processive relay of signals through RAF-MEK-ERK modulates cell growth and proliferation. Signalling through this ERK cascade is frequently amplified in cancers, and drugs such as sorafenib (which is prescribed to treat renal and hepatic carcinomas) and PLX4720 (which targets melanomas) inhibit RAF kinases. Natural factors that influence ERK1/2 signalling include the second messenger cyclic AMP. However, the mechanisms underlying this cascade have been difficult to elucidate. We demonstrate that the A-kinase-anchoring protein AKAP-Lbc and the scaffolding protein kinase suppressor of Ras (KSR-1) form the core of a signalling network that efficiently relay signals from RAF, through MEK, and on to ERK1/2. AKAP-Lbc functions as an enhancer of ERK signalling by securing RAF in the vicinity of MEK1 and synchronizing protein kinase A (PKA)-mediated phosphorylation of Ser 838 on KSR-1. This offers mechanistic insight into cAMP-responsive control of ERK signalling events.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Ratones , Antígenos de Histocompatibilidad Menor , Datos de Secuencia Molecular , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Alineación de Secuencia
4.
PLoS One ; 5(8): e12469, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20814571

RESUMEN

The cJun NH2-terminal kinase (JNK) signal transduction pathway has been implicated in mammary carcinogenesis. To test the role of JNK, we examined the effect of ablation of the Jnk1 and Jnk2 genes in a Trp53-dependent model of breast cancer using BALB/c mice. We detected no defects in mammary gland development in virgin mice or during lactation and involution in control studies of Jnk1(-/-) and Jnk2(-/-) mice. In a Trp53(-/+) genetic background, mammary carcinomas were detected in 43% of control mice, 70% of Jnk1(-/-) mice, and 53% of Jnk2(-/-) mice. These data indicate that JNK1 and JNK2 are not essential for mammary carcinoma development in the Trp53(-/+) BALB/c model of breast cancer. In contrast, this analysis suggests that JNK may partially contribute to tumor suppression. This conclusion is consistent with the finding that tumor-free survival of JNK-deficient Trp53(-/+) mice was significantly reduced compared with control Trp53(-/+) mice. We conclude that JNK1 and JNK2 can act as suppressors of mammary tumor development.


Asunto(s)
Neoplasias de la Mama/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Femenino , Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/deficiencia
5.
Proc Natl Acad Sci U S A ; 105(49): 19264-9, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19033456

RESUMEN

The activity of the ERK has complex spatial and temporal dynamics that are important for the specificity of downstream effects. However, current biochemical techniques do not allow for the measurement of ERK signaling with fine spatiotemporal resolution. We developed a genetically encoded, FRET-based sensor of ERK activity (the extracellular signal-regulated kinase activity reporter, EKAR), optimized for signal-to-noise ratio and fluorescence lifetime imaging. EKAR selectively and reversibly reported ERK activation in HEK293 cells after epidermal growth factor stimulation. EKAR signals were correlated with ERK phosphorylation, required ERK activity, and did not report the activities of JNK or p38. EKAR reported ERK activation in the dendrites and nucleus of hippocampal pyramidal neurons in brain slices after theta-burst stimuli or trains of back-propagating action potentials. EKAR therefore permits the measurement of spatiotemporal ERK signaling dynamics in living cells, including in neuronal compartments in intact tissues.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Sistema de Señalización de MAP Quinasas , Células Piramidales/enzimología , Potenciales de Acción/fisiología , Animales , Artefactos , Proteínas Bacterianas/genética , Línea Celular , Dendritas/enzimología , Células Endoteliales/citología , Células Endoteliales/enzimología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Riñón/citología , Proteínas Luminiscentes/genética , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas
6.
Cancer Cell ; 11(2): 101-3, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17292820

RESUMEN

It is established that p38 MAPK can negatively regulate tumorigenesis, but the mechanism is incompletely understood. A new study in this issue of Cancer Cell shows that p38 MAP kinase plays a selective role in tumor initiation mediated by oxidative stress.


Asunto(s)
Transformación Celular Neoplásica , Proteína Quinasa 14 Activada por Mitógenos/fisiología , Neoplasias/enzimología , Estrés Oxidativo , Animales , Apoptosis , Humanos , Proteína Quinasa 14 Activada por Mitógenos/genética , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...