Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(11): e0259764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34843508

RESUMEN

Intermittency are a common and challenging problem in demand forecasting. We introduce a new, unified framework for building probabilistic forecasting models for intermittent demand time series, which incorporates and allows to generalize existing methods in several directions. Our framework is based on extensions of well-established model-based methods to discrete-time renewal processes, which can parsimoniously account for patterns such as aging, clustering and quasi-periodicity in demand arrivals. The connection to discrete-time renewal processes allows not only for a principled extension of Croston-type models, but additionally for a natural inclusion of neural network based models-by replacing exponential smoothing with a recurrent neural network. We also demonstrate that modeling continuous-time demand arrivals, i.e., with a temporal point process, is possible via a trivial extension of our framework. This leads to more flexible modeling in scenarios where data of individual purchase orders are directly available with granular timestamps. Complementing this theoretical advancement, we demonstrate the efficacy of our framework for forecasting practice via an extensive empirical study on standard intermittent demand data sets, in which we report predictive accuracy in a variety of scenarios.


Asunto(s)
Redes Neurales de la Computación , Análisis por Conglomerados , Investigación Empírica , Humanos , Modelos Estadísticos
2.
J Opt Soc Am A Opt Image Sci Vis ; 35(1): 88-97, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29328096

RESUMEN

Characterization of nanoparticle aggregates from observed scattered light leads to a highly complex inverse problem. Even the forward model is so complex that it prohibits the use of classical likelihood-based inference methods. In this study, we compare four so-called likelihood-free methods based on approximate Bayesian computation (ABC) that requires only numeric simulation of the forward model without the need of evaluating a likelihood. In particular, rejection, Markov chain Monte Carlo, population Monte Carlo, and adaptive population Monte Carlo (APMC) are compared in terms of accuracy. In the current model, we assume that the nanoparticle aggregates are mutually well separated and made up of particles of same size. Filippov's particle-cluster algorithm is used to generate aggregates, and discrete dipole approximation is used to estimate scattering behavior. It is found that the APMC algorithm is superior to others in terms of time and acceptance rates, although all algorithms produce similar posterior distributions. Using ABC techniques and utilizing unpolarized light experiments at 266 nm wavelength, characterization of soot aggregates is performed with less than 2 nm deviation in nanoparticle radius and 3-4 deviation in number of nanoparticles forming the monodisperse aggregates. Promising results are also observed for the polydisperse aggregate with log-normal particle size distribution.

3.
Sensors (Basel) ; 17(11)2017 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-29109375

RESUMEN

We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.

4.
J Neural Eng ; 13(4): 046010, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27265063

RESUMEN

OBJECTIVE: In this paper, we aimed for the robust estimation of the parameters and states of the hemodynamic model by using blood oxygen level dependent signal. APPROACH: In the fMRI literature, there are only a few successful methods that are able to make a joint estimation of the states and parameters of the hemodynamic model. In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter estimation. MAIN RESULTS: Former sequential Monte Carlo methods were only reliable in the hemodynamic state estimates. They were claimed to outperform the local linearization (LL) filter and the extended Kalman filter (EKF). The PSEM algorithm is compared with the most successful method called square-root cubature Kalman smoother (SCKS) for both state and parameter estimation. SCKS was found to be better than the dynamic expectation maximization (DEM) algorithm, which was shown to be a better estimator than EKF, LL and particle filters. SIGNIFICANCE: PSEM was more accurate than SCKS for both the state and the parameter estimation. Hence, PSEM seems to be the most accurate method for the system identification and state estimation for the hemodynamic model inversion literature. This paper do not compare its results with Tikhonov-regularized Newton-CKF (TNF-CKF), a recent robust method which works in filtering sense.


Asunto(s)
Algoritmos , Hemodinámica/fisiología , Oxígeno/sangre , Simulación por Computador , Electroencefalografía , Humanos , Funciones de Verosimilitud , Imagen por Resonancia Magnética/métodos , Modelos Neurológicos , Método de Montecarlo
5.
Bioinformatics ; 32(3): 388-97, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26411869

RESUMEN

MOTIVATION: Simple bioinformatic tools are frequently used to analyse time-series datasets regardless of their ability to deal with transient phenomena, limiting the meaningful information that may be extracted from them. This situation requires the development and exploitation of tailor-made, easy-to-use and flexible tools designed specifically for the analysis of time-series datasets. RESULTS: We present a novel statistical application called CLUSTERnGO, which uses a model-based clustering algorithm that fulfils this need. This algorithm involves two components of operation. Component 1 constructs a Bayesian non-parametric model (Infinite Mixture of Piecewise Linear Sequences) and Component 2, which applies a novel clustering methodology (Two-Stage Clustering). The software can also assign biological meaning to the identified clusters using an appropriate ontology. It applies multiple hypothesis testing to report the significance of these enrichments. The algorithm has a four-phase pipeline. The application can be executed using either command-line tools or a user-friendly Graphical User Interface. The latter has been developed to address the needs of both specialist and non-specialist users. We use three diverse test cases to demonstrate the flexibility of the proposed strategy. In all cases, CLUSTERnGO not only outperformed existing algorithms in assigning unique GO term enrichments to the identified clusters, but also revealed novel insights regarding the biological systems examined, which were not uncovered in the original publications. AVAILABILITY AND IMPLEMENTATION: The C++ and QT source codes, the GUI applications for Windows, OS X and Linux operating systems and user manual are freely available for download under the GNU GPL v3 license at http://www.cmpe.boun.edu.tr/content/CnG. CONTACT: sgo24@cam.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Teorema de Bayes , Análisis por Conglomerados , Modelos Estadísticos , Programas Informáticos
6.
Comput Intell Neurosci ; : 785152, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19536273

RESUMEN

We describe nonnegative matrix factorisation (NMF) with a Kullback-Leibler (KL) error measure in a statistical framework, with a hierarchical generative model consisting of an observation and a prior component. Omitting the prior leads to the standard KL-NMF algorithms as special cases, where maximum likelihood parameter estimation is carried out via the Expectation-Maximisation (EM) algorithm. Starting from this view, we develop full Bayesian inference via variational Bayes or Monte Carlo. Our construction retains conjugacy and enables us to develop more powerful models while retaining attractive features of standard NMF such as monotonic convergence and easy implementation. We illustrate our approach on model order selection and image reconstruction.

7.
J Neurosci Methods ; 178(2): 378-84, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19146878

RESUMEN

Cellular traffic is a central aspect of cell function in health and disease. It is highly dynamic, and can be investigated at increasingly finer temporal and spatial resolution due to new imaging techniques and probes. Manual tracking of these data is labor-intensive and observer-biased and existing automation is only semi-automatic and requires near-perfect object detection and high-contrast images. Here, we describe a novel automated technique for quantifying cellular traffic. Using local intrinsic information from adjacent images in a sequence and a model for object characteristics, our approach detects and tracks multiple objects in living cells via Multiple Hypothesis Tracking and handles several confounds (merge/split, birth/death, and clutters), as reliable as expert observers. By replacing the related component (e.g. using a different appearance model) the method can be easily adapted for quantitative analysis of other biological samples.


Asunto(s)
Astrocitos/metabolismo , Neuronas/metabolismo , Algoritmos , Animales , Automatización , Teorema de Bayes , Transporte Biológico , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Humanos , Ratones , Neuropéptido Y/metabolismo , Orgánulos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Programas Informáticos , Transducción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...