Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 10(12): 7170-7180, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35493877

RESUMEN

Based on the excellent biocompatibility of collagen, collagen was extracted from pig skin by acid-enzymatic method. The films were prepared by the self-aggregation behavior of collagen, and the catalase was immobilized by adsorption, cross-linking and embedding. The experiment investigated the effects of glutaraldehyde on the mechanical properties, external sensory properties, and denaturation temperature of the films. The results showed that self-aggregating material could maintain the triple helix structure of pig skin collagen. The self-aggregation treatment and cross-linking treatment can improve the mechanical properties to 53 MPa, while the glutaraldehyde cross-linking agent can increase the denaturation temperature of the pig skin collagen self-aggregating membrane by 20.35% to 84.48 °C. This means that its application to immobilized catalase has better stability. The comparison shows that the catalase immobilized by the adsorption method has strong activity and high operational stability, and the cross-linking agent glutaraldehyde and the initial enzyme concentration have a significant effect on the immobilization, and the activity can reach 175 U g-1. After 16 uses of the film, the catalase was completely inactivated. This study provides a reference for the preparation of a catalase sensor that can be used to detect hydrogen peroxide in food by a catalase sensor.

2.
Mater Sci Eng C Mater Biol Appl ; 105: 110024, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546434

RESUMEN

We extracted collagen (CL) from the scales of Ctenopharyngodon idella and fabricated a CL self-assembly film. Catalase (CAT) was immobilized on the films using cross-linking, adsorption, and embedding methods. The activity and operational stability of immobilized CAT were investigated, along with the influence of the concentration of glutaraldehyde (GTA) and of the initial concentration of embedded CAT. The results showed that the CL triple helix remained intact. Differential scanning calorimetry data showed that the thermal stability of CL was significantly improved by neutral salt-induced self-aggregation and GTA cross-linking. The immobilized enzyme had high activity and good operational stability. When the enzyme concentration reached 0.5 mg/mL, immobilized enzyme activity of grass carp scales reached a maximum of 2596 U/g, and after twenty-two uses, enzyme activity remained above 50%, and it could be reused >45 times (CAT = 0.5 mg/mL, GTA = 5%, Temperature = 30 °C, pH = 7). Moreover, the optimum temperature and pH of immobilized CAT were 35 °C and 7, respectively, while the same for free CAT was 30 °C and 7, respectively. This indicated that immobilization of CAT has a protective effect.


Asunto(s)
Escamas de Animales/química , Carpas/anatomía & histología , Catalasa/metabolismo , Colágeno/química , Enzimas Inmovilizadas/metabolismo , Adsorción , Escamas de Animales/ultraestructura , Animales , Estabilidad de Enzimas , Glutaral/química , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Desnaturalización Proteica , Estándares de Referencia , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...