Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 20757, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237665

RESUMEN

Monel K-500 is a high-performance superalloy composed of nickel and copper, renowned for its exceptional strength, hardness, and resistance to corrosion. To machine this material more precisely and accurately, Electrical Discharge Machining (EDM) is one of the best choices. In EDM, material removal rate (MRR) and electrode wear rate (EWR) are crucial performance parameters that are often conflicting in nature. These parameters depend on several input variables, including peak current (Ip), pulse on time (Ton), duty cycle (Tau), and servo voltage (SV). Optimizing the EDM process is essential for enhancing performance. In this research, a set of experiments were conducted using EDM on Monel K500 alloy to determine the optimal process parameters. The Box-Behnken design was used to prepare the experimental design matrix. Utilizing the experimental data, a second-order mathematical model was developed using Response Surface Methodology (RSM). R2 value is found to be 99.40% and 96.60% for MRR and EWR RSM-based prediction model, respectively. High value of R2 is indicated is indicated good adequacy for prediction. The mathematical model further used in multi-objective dragonfly algorithm (MODA): a new meta-heuristic optimization technique to solve multi-objective optimization problem of EDM. The MODA is a very useful technique to achieve optimal solutions from the multi decision criteria. Utilizing this technique, a set of non-dominated solutions was obtained. Further, the TOPSIS method was used to determine the most desirable optimal solution, which was found to be 0.0135 mm3/min for EWR and 6.968 mm3/min for MRR. These results were obtained when the optimal process parameters were selected as Ip = 6 A, Ton = 200 µs, Tau = 12, and SV = 41.6 V. Operators can machine Monel K500 by selecting the above-mentioned optimal parameters to achieve the best performance.

3.
Sci Rep ; 14(1): 18729, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134620

RESUMEN

The primary objective of this study is to investigate the microstructural, mechanical, and wear behaviour of AZ31/TiC surface composites fabricated through friction stir processing (FSP). TiC particles are reinforced onto the surface of AZ31 magnesium alloy to enhance its mechanical properties for demanding industrial applications. The FSP technique is employed to achieve a uniform dispersion of TiC particles and grain refinement in the surface composite. Microstructural characterization, mechanical testing (hardness and tensile strength), and wear behaviour evaluation under different operating conditions are performed. Response surface methodology (RSM) is utilized to optimize the wear rate by considering the effects of process parameters. The results reveal a significant improvement in hardness (41.3%) and tensile strength (39.1%) of the FSP-TiC composite compared to the base alloy, attributed to the refined grain structure (6-10 µm) and uniform distribution of TiC particles. The proposed regression model accurately predicts the wear rate, with a confirmation test validating an error percentage within ± 4%. Worn surface analysis elucidates the wear mechanisms, such as shallow grooves, delamination, and oxide layer formation, influenced by the applied load, sliding distance, and sliding velocity. The enhanced mechanical properties and wear resistance are attributed to the synergistic effects of grain refinement, particle-accelerated nucleation, the barrier effect of TiC particles, and improved interfacial bonding achieved through FSP. The optimized FSP-TiC composites exhibit potential for applications in industries demanding high strength, hardness, and wear resistance.

4.
Heliyon ; 10(15): e34648, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157365

RESUMEN

Dissimilar metal combinations are frequently employed in the power generation and nuclear industries. Where stainless steel piping systems are connected to pressure vessels made of low-alloy steel, the subsystems of liquid rocket engines also have different, dissimilar material combinations. Dissimilar welding plays a vital role in ensuring the integrity, performance, and reliability of components and structures operating in cryogenic environments, in this study, plates of AISI 316L and AISI 321, each 5 mm thick, were successfully joined using the pulsed current gas tungsten arc welding (PCGTAW) technique with optimized process parameters. These weld joints are mostly present in rocket engines subjected to a cryogenic environment. Due to the low temperature environment, the metallurgical properties of these joints change, which affects their mechanical properties. As it is a structural part, PCGTAW welding is most common method for joining this kind of material. In this work, Microstructural analysis of the weldment revealed a combination of vermicular, lacy, and acicular ferrite morphologies in the fusion zone at the root, mid, and crown locations. Furthermore, no solidification cracking was detected in the weldments based on the optical micrograph and SEM results. Intergranular corrosion (IGC) testing indicated the absence of a ditch structure, suggesting that the heat-affected zone (HAZ) on both sides of the weld joint was not being susceptible to sensitization. However, the HAZ of the AISI 316L side exhibited coarser grains compared to AISI 321. Analysis of tensile properties revealed a significant influence of the testing environment on the tensile strength of the dissimilar welded joints. At room temperature, the average ultimate tensile strength (UTS) was measured as 621 MPa. Remarkably, at cryogenic conditions, the average tensile properties significantly increased to 1319 MPa. Microhardness analysis showed the highest hardness associated with the AISI 321 side. The fusion zone exhibited a large deviation in the hardness profile (205 ± 10 HV), with the highest average hardness observed in the middle part of the weld. However, the hot cracking behavior of the weld was investigated by using a suutula diagram at various locations of the weld. The investigation revealed that the Creq/Nieq ratio exceeded the critical threshold value, effectively diminishing the propensity for hot cracking in the fusion zone. Overall, these findings underscore the effectiveness of the PCGTAW technique in joining dissimilar materials, as well as the importance of microstructural and mechanical property evaluations, especially under extreme operating conditions such as cryogenic temperatures. Paraphrase.

5.
Heliyon ; 10(12): e32911, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022051

RESUMEN

Many-objective optimization (MaO) is an important aspect of engineering scenarios. In many-objective optimization algorithms (MaOAs), a key challenge is to strike a balance between diversity and convergence. MaOAs employs various tactics to either enhance selection pressure for better convergence and/or implements additional measures for sustaining diversity. With increase in number of objectives, the process becomes more complex, mainly due to challenges in achieving convergence during population selection. This paper introduces a novel Many-Objective Ant Lion Optimizer (MaOALO), featuring the widely-popular ant lion optimizer algorithm. This method utilizes reference point, niche preserve and information feedback mechanism (IFM), to enhance the convergence and diversity of the population. Extensive experimental tests on five real-world (RWMaOP1- RWMaOP5) optimization problems and standard problem classes, including MaF1-MaF15 (for 5, 9 and 15 objectives), DTLZ1-DTLZ7 (for 8 objectives) has been carried out. It is shown that MaOALO is superior compared to ARMOEA, NSGA-III, MaOTLBO, RVEA, MaOABC-TA, DSAE, RL-RVEA and MaOEA-IH algorithms in terms of GD, IGD, SP, SD, HV and RT metrics. The MaOALO source code is available at: https://github.com/kanak02/MaOALO.

6.
Sci Rep ; 14(1): 9683, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678121

RESUMEN

Surface integrity is one of the key elements used to judge the quality of machined surfaces, and surface roughness is one such quality parameter that determines the pass level of the machined product. In the present study, AISI D2 steel was machined with electric discharge at different process parameters using Jatropha and EDM oil. Titanium dioxide (TiO2) nanopowder was added to the dielectric to improve surface integrity. Experiments were performed using the one variable at a time (OVAT) approach for EDM oil and Jatropha oil as dielectric media. From the experimental results, it was observed that response trends of surface roughness (SR) using Jatropha oil are similar to those of commercially available EDM oil, which proves that Jatropha oil is a technically and operationally feasible dielectric and can be efficiently replaced as dielectric fluid in the EDM process. The lowest value of S.R. (i.e., 4.5 microns) for EDM and Jatropha oil was achieved at current = 9 A, Ton = 30 µs, Toff = 12 µs, and Gap voltage = 50 V. As the values of current and pulse on time increase, the S.R. also increases. Current and pulse-on-time were the most significant parameters affecting S.R. Machine learning methods like linear regression, decision trees, and random forests were used to predict the surface roughness. Random forest modeling is highly accurate, with an R2 value of 0.89 and an MSE of 1.36% among all methods. Random forest models have better predictive capabilities and may be one of the best options for modeling complex EDM processes.

7.
Heliyon ; 10(5): e26665, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486727

RESUMEN

This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.

8.
Sci Rep ; 14(1): 1543, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233510

RESUMEN

An experimental study of three body abrasive wear behaviour of AZ31/15 vol.% Zirconium dioxide (ZrO2) reinforced composites prepared by stir casting has been carried out. Microstructural analysis of the developed composites was carried out and found out that the microstructure of the composites revealed a uniform distribution of ZrO2 particles with refinement in the grain size of the matrix from 70 to 20 µm. The alterations in the microstructure led to an enhancement in both hardness (68-104 HV) and tensile strength (156-236 MPa) due to Orowan strengthening, quench hardening effect and better bonding. Response surface methodology was applied to formulate the three-body abrasive wear test characteristics such as load, speed, and time. Three body abrasive test results were utilized to generate surface graphs for different combinations of wear test parameters revealed an increase in specific wear rate. The specific wear rate was observed to increase with increase in speed up to a certain level and then started to decrease. The lowest possible specific wear rate was obtained for an optimized load of 20 N and a speed of 190 ms-1. Scanning electron microscopic examination of wear-tested samples showed higher specific wear rate at higher loads with predominantly abrasion type material removal. In conclusion, this study makes a substantial contribution to the field by elucidating the complex relationships among microstructure, mechanical properties, and the three-body abrasive wear behavior of AZ31/ZrO2 composites. The determination of optimal wear conditions and the insights gained into wear mechanisms provide valuable information for designing materials, implementing engineering solutions, and advancing the creation of wear-resistant components across a range of industries.

9.
Heliyon ; 10(1): e23571, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187288

RESUMEN

Feature selection is a critical component of machine learning and data mining which addresses challenges like irrelevance, noise, redundancy in large-scale data etc., which often result in the curse of dimensionality. This study employs a K-nearest neighbour wrapper to implement feature selection using six nature-inspired algorithms, derived from human behaviour and mammal-inspired techniques. Evaluated on six real-world datasets, the study aims to compare the performance of these algorithms in terms of accuracy, feature count, fitness, convergence and computational cost. The findings underscore the efficacy of the Human Learning Optimization, Poor and Rich Optimization and Grey Wolf Optimizer algorithms across multiple performance metrics. For instance, for mean fitness, Human Learning Optimization outperforms the others, followed by Poor and Rich Optimization and Harmony Search. The study suggests the potential of human-inspired algorithms, particularly Poor and Rich Optimization, in robust feature selection without compromising classification accuracy.

10.
Sci Rep ; 13(1): 20089, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974019

RESUMEN

Dry sliding wear behaviour of friction stir processed (FSP) AZ31 and AZ31/ZrC particles (5, 10, and 15 vol%) reinforced surface composite was investigated at different sliding speeds and loads. The samples were tested using a pin-on-disc apparatus with EN31 steel as the counter body to determine the role of FSP and ZrC reinforcement on the microstructure, hardness, and wear behaviour of AZ31. Base metal AZ31 alloy exhibits a hardness of 60 HV, whereas the 15 vol% ZrC-reinforced composites had the highest hardness of 108 HV. It was also identified that 15 vol% ZrC-reinforced composites exhibited lowest wear rate and friction coefficient under all testing conditions. Abrasion, delamination, oxidation, material softening, and plastic deformation are the primary wear mechanisms viewed from the wear tracks of the samples. Higher volume fraction of ZrC particles exhibited better wear resistance at all speeds and loads than AZ31 alloy. A wear map has been generated for different material compositions and wear conditions to identify the main wear mechanisms easily.

11.
Materials (Basel) ; 16(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570145

RESUMEN

Nimonic alloy is difficult to machine using traditional metal cutting techniques because of the high cutting forces required, poor surface integrity, and tool wear. Wire electrical discharge machining (WEDM) is used in a number of sectors to precisely machine complex forms of nickel-based alloy in order to attempt to overcome these challenges and provide high-quality products. The Taguchi-based design of experiments is utilized in this study to conduct the tests and analyses. The gap voltage (GV), pulse-on time (Ton), pulse-off time (Toff), and wire feed (WF), are considered as the variable process factors. GRA is used for the WEDM process optimization for the Nimonic-263 superalloy, which has multiple performance qualities including the material removal rate (MRR), surface roughness (SR), and kerf width (KW). ANOVA analysis was conducted to determine the factors' importance and influence on the output variables. Multi objective optimization techniques were employed for assessing the machining performances of WEDM using GRA. The ideal input parameter combinations were determined to be a gap voltage (GV) of 40 V, a pulse-on time (Ton) of 8 µs, a pulse-off time (Toff) of 16 µs, and a wire feed (WF) of 4 m/min. A material removal rate of 8.238 mm3/min, surface roughness of 2.83 µm, and kerf width of 0.343 mm were obtained. The validation experiments conducted also demonstrated that the predicted and experimental values could accurately forecast the responses.

12.
Materials (Basel) ; 16(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444924

RESUMEN

Titanium nitride (TiN) thin film coatings were grown over silicon (p-type) substrate using the atmospheric pressure chemical vapour deposition (APCVD) technique. The synthesis process was carried out to evaluate the effect of deposition time on the physical and mechanical characteristics of TiN coating. Thin films grown over Si substrate were further characterised to evaluate the morphological properties, surface roughness and mechanical properties using a scanning electrode microscope (SEM), atomic force microscopy (AFM) and nanoindentation, respectively. EDS equipped with SEM showed the presence of Ti and N elements in considerable amounts. TiN morphology obtained from the SEM test showed small-sized particles on the surface along with cracks and pores. AFM results revealed that by increasing the deposition time, the surface roughness of the coating also increased. The nanomechanical properties such as nanohardness (H) and Young's modulus (E), etc., evaluated using the nanoindentation technique showed that higher deposition time led to an increase in H and E. Overall, it was observed that deposition time plays a vital role in the TiN coating deposition using the CVD technique.

13.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445058

RESUMEN

Custom 450 stainless steel is the most desirable material across industries due to its widespread application in the aerospace, defense and marine industries. Stainless-steel materials are challenging to deal with and fall into the list of hard-to-process materials due to their low heat conduction coefficient and high mechanical properties. In this research work, end milling was carried out on Custom 450 stainless steel machined using TiAlN coated with tungsten carbide inserts that have been cryo-treated (CT) for 24 h (24 h) and 36 h (36 h), as well as untreated (UT) inserts. The inserts were evaluated in terms of feed force, feed rate and consistent depth of cut (ap) at various spindle speeds (S). Also examined were the tool morphology, chip anatomy and surface morphology of cryo-treated material compared to untreated inserts at various responses to cutting force (Fx, Fy, Fz), cutting temperature (Tc), vibration and surface abrasion. For inserts that have been cryo-treated for 36 h, the feed force (Fx) value was 44% and 5% less compared to inserts treated for 24 h and in UT inserts, respectively. Furthermore, for 24-h and 36-h CT inserts, feed force (Fx) was 12% and 20% less compared to a UT insert. Using 24-h cryo-treated inserts as opposed to UT inserts significantly reduced the surface roughness by 20%. Cutting inserts that have undergone cryogenic treatment have been observed to exhibit longer cutting tool life due to less wear and friction on the cutting edges.

14.
Materials (Basel) ; 16(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37241242

RESUMEN

In today's world, engineering materials have changed dramatically. Traditional materials are failing to satisfy the demands of present applications, so several composites are being used to address these issues. Drilling is the most vital manufacturing process in most applications, and the drilled holes serve as maximum stress areas that need to be treated with extreme caution. The issue of selecting optimal parameters for drilling novel composite materials has fascinated researchers and professional engineers for a long time. In this work, LM5/ZrO2 composites are manufactured by stir casting using 3, 6, and 9 wt% zirconium dioxide (ZrO2) as reinforcement and LM5 aluminium alloy as matrix. Fabricated composites were drilled using the L27 OA to determine the optimum machining parameters by varying the input parameters. The purpose of this research is to find the optimal cutting parameters while simultaneously addressing the thrust force (TF), surface roughness (SR), and burr height (BH) of drilled holes for the novel composite LM5/ZrO2 using grey relational analysis (GRA). The significance of machining variables on the standard characteristics of the drilling as well as the contribution of machining parameters were found using GRA. However, to obtain the optimum values, a confirmation experiment was conducted as a last step. The experimental results and GRA reveal that a feed rate (F) of 50 m/s, a spindle speed (S) of 3000 rpm, Carbide drill material, and 6% reinforcement are the optimum process parameters for accomplishing maximum grey relational grade (GRG). Analysis of variance (ANOVA) reveals that drill material (29.08%) has the highest influence on GRG, followed by feed rate (24.24%) and spindle speed (19.52%). The interaction of feed rate and drill material has a minor impact on GRG; the variable reinforcement percentage and its interactions with all other variables were pooled up to the error term. The predicted GRG is 0.824, and the experimental value is 0.856. The predicted and experimental values match each other well. The error is 3.7%, which is very minimal. Mathematical models were also developed for all responses based on the drill bits used.

15.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984388

RESUMEN

This paper presents the design, development, and optimization of a 3D printed micro horizontal axis wind turbine blade made of PLA material. The objective of the study was to produce 100 watts of power for low-wind-speed applications. The design process involved the selection of SD7080 airfoil and the determination of the material properties of PLA and ABS. A structural analysis of the blade was carried out using ANSYS software under different wind speeds, and Taguchi's L16 orthogonal array was used for the experiments. The deformation and equivalent stress of the PLA material were identified, and the infill percentage and wind speed velocity were optimized using the moth-flame optimization (MFO) algorithm. The results demonstrate that PLA material has better structural characteristics compared to ABS material. The optimized parameters were used to fabricate the turbine blades using the fusion deposition modeling (FDM) technique, and they were tested in a wind tunnel.

16.
Materials (Basel) ; 16(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36837219

RESUMEN

Tungsten Inert Gas (TIG) welding is a commonly used welding technique for ferritic stainless steel, due to its ability to produce high-quality, clean, and precise welds. This welding method provides excellent control over the heat input, making it suitable for thin-walled, high-alloy materials such as ferritic stainless steel. The purpose of this study was to investigate the effect of using two different filler materials, 310 (austenitic) and 410 (ferritic), on the microstructural and mechanical properties of Tungsten Inert Gas (TIG) weld butt joints of 430 ferritic stainless steel (FSS). The results showed that the choice of filler material significantly impacted the dilution percentage, the chromium-nickel equivalent ratio, microstructure, microhardness, and tensile characteristics of the welded joint. The use of 310 filler resulted in a columnar microstructure, whereas the use of 410 filler resulted in a ferritic (acicular ferrite) microstructure with the presence of martensite and austenite. The sample welded with 410 filler demonstrated superior mechanical properties compared to the sample welded with 310 filler. These findings emphasize the importance of selecting the appropriate filler material in order to achieve the desired microstructural and mechanical properties in 430 FSS welded joints.

17.
Materials (Basel) ; 16(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837340

RESUMEN

This paper investigates the influence of cutting speed and flank wear on the depth profile of residual stresses, as well as the fraction of retained austenite after hard turning of quenched bearing steel 100Cr6. Residual stress and retained austenite profiles were studied for the white layer, heat-affected zone thickness, and XRD sensing depth. It was found that the influence of flank wear on the white layer and heat-affected zone thickness predominates. On the other hand, residual stresses are affected the cutting speed and the superimposing contribution of flank wear. Moreover, these aspects also alter microhardness in the affected regions. The study also demonstrates that information concerning residual stresses and the austenite fraction is integrated into the white layer, and the heat-affected zone in the surface is produced by the insert of low flank wear since the XRD sensing depth is more than the thickness of the white layer. On the other hand, the pure contribution of the white layer or the heat-affected zone to residual stress and the austenite fraction can be investigated when the affected surface region is thick enough.

18.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850268

RESUMEN

In this study, the mechanical properties of basalt/ramie/polyester hybrid composite laminates were investigated. A matrix of 45% polyester was used, as it has good bonding properties between fibers. The composite laminates were fabricated using a hand layup technique, with seven layers stacked in different sequences and impregnated in the polyester matrix to create a hybrid configuration. Tensile, flexural, impact, compression, and hardness tests were conducted according to ASTM standards for mechanical characterization. The results showed that the overall stacking sequence of sample number seven (BRBRBRB) had the highest tensile strength at 120 MPa, impact energy at 8 J, flexural strength at 115 MPa, compression strength at 70 MPa, and hardness of 77. Natural fiber-reinforced composites are being used in current automotive industry applications, such as in electric vehicles.

19.
Polymers (Basel) ; 15(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36616593

RESUMEN

Investigations into polymer composites are mainly focused on properties dependent on glass fiber reinforcement and particulate fillers. In the present study, the effect of the binder was examined. The specimens were produced with two types of epoxy resin, with similar numbers of glass mat layers and similar proportions of quartz powder added. However, one group was fabricated with an emulsion binder in the glass mats and another group with a powder binder. Attention was concentrated on the tribological properties of the as-prepared composites, though their strength was examined as well. The hardness of the Sikafloor matrix was found to be much more sensitive to the applied binder than that of the MC-DUR matrix. No direct correlation between the microhardness and the specific wear rate was observed and increasing the particulate filler proportion did not cause a direct increase of the specific wear rate. In particular, the highest specific wear rate, around 350 J/g, was reached for both matrices with a 1% quartz addition when the emulsion binder was applied, while in the case of the powder binder it was with 6% quartz with the MC-DUR matrix, and there was no quartz addition with the Sikafloor matrix. The highest microhardness, HV0.5 = 25, in turn, was reached for the mats with the emulsion binder in the Sikafloor matrix with an addition of 10% quartz powder, while the highest friction coefficient was exhibited in the composite with the MC-DUR matrix, when 1% of the quartz powder and the emulsion binder were applied.

20.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679229

RESUMEN

Plant-derived fibres, called lignocellulosic fibres, are a natural alternative to synthetic fibres in polymer composite reinforcement. Utilizing renewable resources, such as fibre-reinforced polymeric composites made from plant and animal sources, has become a crucial design requirement for developing and producing parts for all industrial goods. Natural-fibre-based composites are used for door panels, trays, glove boxes, etc. This study involves developing and thermal analysing a flax fibre reinforced with phenol-formaldehyde resin hybridization with ramie fibre by way of a vacuum infusion process. As per ASTM Standard, eight different sequences were fabricated and thermally characterized. In the present study, three stages of weight loss (%) are shown by the thermogravimetric analysis (TGA). The sample loses less weight during the first stage, more during the second, and more during the third. The sample's overall maximum temperature was recorded at 630 °C. It was discovered that sample D (80.1 °C) had the highest heat deflection temperature, and sample B had the lowest (86.0 °C). Sample C had a low thermal expansion coefficient, while sample G had a high thermal expansion coefficient. Sample E had the highest thermal conductivity, measured at 0.213 W/mK, whereas sample A had the lowest conductivity, at 0.182 W/mK. From the present study, it was found that sample H had better thermal characteristics. The result of the present investigation would generate thermal data regarding hybrid ramie and flax composites, which would be helpful for researchers and practitioners involved in the field of biocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...