Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(8): e3002224, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535687

RESUMEN

Both the spindle microtubule-organizing centers and the nuclear pore complexes (NPCs) are convoluted structures where many signaling pathways converge to coordinate key events during cell division. Interestingly, despite their distinct molecular conformation and overall functions, these structures share common components and collaborate in the regulation of essential processes. We have established a new link between microtubule-organizing centers and nuclear pores in budding yeast by unveiling an interaction between the Bfa1/Bub2 complex, a mitotic exit inhibitor that localizes on the spindle pole bodies, and the Nup159 nucleoporin. Bfa1/Bub2 association with Nup159 is reduced in metaphase to not interfere with proper spindle positioning. However, their interaction is stimulated in anaphase and assists the Nup159-dependent autophagy pathway. The asymmetric localization of Bfa1/Bub2 during mitosis raises the possibility that its interaction with Nup159 could differentially promote Nup159-mediated autophagic processes, which might be relevant for the maintenance of the replicative lifespan.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cuerpos Polares del Huso/metabolismo , Proteínas del Citoesqueleto/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Mitosis/genética
2.
DNA Repair (Amst) ; 94: 102902, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623319

RESUMEN

Cell fitness and survival upon exposure to DNA damage depends on the repair of DNA lesions. Interestingly, cellular identity does affect and finetunes such response, although the molecular basis of such differences between tissues and cell types is not well understood. Thus, a possibility is that DNA repair itself is controlled by the mechanisms that govern cell identity. Here we show that the KLF4, involved in cellular homeostasis, proliferation, cell reprogramming and cancer development, directly regulates resection and homologous recombination proficiency. Indeed, resection efficiency follows KLF4 protein levels, i.e. decreases upon KLF4 downregulation and increases when is overexpressed. Moreover, KLF4 role in resection requires its methylation by the methyl-transferase PRMT5. Thus, PRMT5 depletion not only mimics KLF4 downregulation, but also showed an epistatic genetic relationship. Our data support a model in which the methylation of KLF4 by PRMT5 is a priming event required to license DNA resection and homologous recombination.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Epistasis Genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Reparación del ADN por Recombinación , Línea Celular Tumoral , ADN/metabolismo , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Metilación , Proteína-Arginina N-Metiltransferasas/genética
3.
DNA Repair (Amst) ; 66-67: 11-23, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29705135

RESUMEN

The appropriate repair of DNA double strand breaks is critical for genome maintenance. Thus, several cellular pathways collaborate to orchestrate a coordinated response. These include the repair of the breaks, which could be achieved by different mechanisms. A key protein involved in the regulation of the repair of broken chromosomes is CtIP. Here, we have found new partners of CtIP involved in the regulation of DNA break repair through affecting DNA end resection. We focus on the splicing complex SF3B and show that its depletion impairs DNA end resection and hampers homologous recombination. Functionally, SF3B controls CtIP function at, as least, two levels: by affecting CtIP mRNA levels and controlling CtIP recruitment to DNA breaks, in a way that requires ATM-mediated phosphorylation of SF3B2 at serine 289. Indeed, overexpression of CtIP rescues the resection defect caused by SF3B downregulation. Strikingly, other SF3B depletion phenotypes, such as impaired homologous recombination or cellular sensitivity to DNA damaging agents, are independent of CtIP levels, suggesting a more general role of SF3B in controlling the response to chromosome breaks.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/metabolismo , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Reparación del ADN , Endodesoxirribonucleasas , Humanos , Fosforilación
4.
Nat Commun ; 8(1): 113, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740167

RESUMEN

DNA breaks are complex DNA lesions that can be repaired by two alternative mechanisms: non-homologous end-joining and homologous recombination. The decision between them depends on the activation of the DNA resection machinery, which blocks non-homologous end-joining and stimulates recombination. On the other hand, post-translational modifications play a critical role in DNA repair. We have found that the SUMO E3 ligase CBX4 controls resection through the key factor CtIP. Indeed, CBX4 depletion impairs CtIP constitutive sumoylation and DNA end processing. Importantly, mutating lysine 896 in CtIP recapitulates the CBX4-depletion phenotype, blocks homologous recombination and increases genomic instability. Artificial fusion of CtIP and SUMO suppresses the effects of both the non-sumoylatable CtIP mutant and CBX4 depletion. Mechanistically, CtIP sumoylation is essential for its recruitment to damaged DNA. In summary, sumoylation of CtIP at lysine 896 defines a subpopulation of the protein that is involved in DNA resection and recombination.The choice between non-homologous end-joining and homologous recombination to repair a DNA double-strand break depends on activation of the end resection machinery. Here the authors show that SUMO E3 ligase CBX4 sumoylates subpopulation of CtIP to regulate recruitment to breaks and resection.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Ligasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Western Blotting , Proteínas Portadoras/genética , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Endodesoxirribonucleasas , Células HEK293 , Recombinación Homóloga , Humanos , Ligasas/genética , Microscopía Confocal , Proteínas Nucleares/genética , Proteínas del Grupo Polycomb/genética , Interferencia de ARN , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
5.
Methods Mol Biol ; 1505: 45-57, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27826855

RESUMEN

There are multiple processes that occur at certain points during the cell cycle and that affect later steps. Impairment of such processes could cause delays or even completely abolish cell cycle progression. Therefore, it is extremely helpful in order to determine the potential consequences that interfering on a cellular process imposes on cell cycle progression to be able to precisely characterize the cell cycle stage by using molecular markers. Here, we describe the analysis of the protein levels of known mitotic regulators as molecular markers to monitor the progression of cells through the cell cycle by western blot in synchronized yeast cell cultures.


Asunto(s)
Proteínas de Ciclo Celular/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/citología , Técnicas de Cultivo de Célula/métodos , Ciclo Celular , Electroforesis en Gel de Poliacrilamida/métodos , Immunoblotting/métodos , Mitosis
6.
Nucleic Acids Res ; 43(2): 987-99, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25567988

RESUMEN

DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas Nucleares/metabolismo , Proteína BRCA1/metabolismo , Línea Celular , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Endodesoxirribonucleasas , Humanos , Reparación del ADN por Recombinación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
7.
Appl Microbiol Biotechnol ; 98(16): 7113-24, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24818689

RESUMEN

The transcription factor CreA is the main regulator responsible for carbon repression in filamentous fungi. CreA is a wide domain regulator that binds to regulatory elements in the promoters of target genes to repress their transcription. Penicillin biosynthesis and the expression of penicillin biosynthetic genes are subject to carbon repression. However, evidence of the participation of CreA in this regulation is still lacking, and previous studies on the promoter of the pcbC gene of Aspergillus nidulans indicated the lack of involvement of CreA in its regulation. Here we present clear evidence of the participation of CreA in carbon repression of penicillin biosynthesis and expression of the pcbAB gene, encoding the first enzyme of the pathway, in Penicillium chrysogenum. Mutations in cis of some of the putative CreA binding sites present in the pcbAB gene promoter fused to a reporter gene caused an important increase in the measured enzyme activity in glucose-containing medium, whereas activity in the medium with lactose was not affected. An RNAi strategy was used to attenuate the expression of the creA gene. Transformants expressing a small interfering RNA for creA showed higher penicillin production, and this increase was more evident when glucose was used as carbon source. These results confirm that CreA plays an important role in the regulation of penicillin biosynthesis in P. chrysogenum and opens the possibility of its utilization to improve the industrial production of this antibiotic.


Asunto(s)
Represión Catabólica , Regulación Fúngica de la Expresión Génica , Penicilinas/biosíntesis , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Factores de Transcripción/metabolismo , Fusión Artificial Génica , Sitios de Unión , Genes Reporteros , Mutación , Regiones Promotoras Genéticas , Transcripción Genética
8.
Curr Biol ; 22(12): 1075-83, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22608510

RESUMEN

BACKGROUND: Budding yeast is a unique model to dissect spindle orientation in a cell dividing asymmetrically. In yeast, this process begins with the capture of pole-derived astral microtubules (MTs) by the polarity determinant Bud6p at the cortex of the bud in G(1). Bud6p couples MT growth and shrinkage with spindle pole movement relative to the contact site. This activity resides in N-terminal sequences away from a domain linked to actin organization. Kip3p (kinesin-8), a MT depolymerase, may be implicated, but other molecular details are essentially unknown. RESULTS: We show that Bud6p and Kip3p play antagonistic roles in controlling the length of MTs contacting the bud. The stabilizing role of Bud6p required the plus-end-tracking protein Bim1p (yeast EB1). Bim1p bound Bud6p N terminus, an interaction that proved essential for cortical capture of MTs in vivo. Moreover, Bud6p influenced Kip3p dynamic distribution through its effect on MT stability during cortical contacts via Bim1p. Coupling between Kip3p-driven depolymerization and shrinkage at the cell cortex required Bud6p, Bim1p, and dynein, a minus-end-directed motor helping tether the receding plus ends to the cell cortex. Validating these findings, live imaging of the interplay between dynein and Kip3p demonstrated that both motors decorated single astral MTs with dynein persisting at the plus end in association with the site of cortical contact during shrinkage at the cell cortex. CONCLUSIONS: Astral MT shrinkage linked to Bud6p involves its direct interaction with Bim1p and the concerted action of two MT motors-Kip3p and dynein.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microtúbulos/metabolismo , Microtúbulos/fisiología , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Huso Acromático/fisiología , Actinas/metabolismo , Actinas/ultraestructura , Western Blotting , Densitometría , Dineínas/metabolismo , Electroforesis en Gel de Poliacrilamida , Quimografía , Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo
9.
Mol Biol Cell ; 21(15): 2685-95, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20534809

RESUMEN

In Saccharomyces cerevisiae, Kar9p, one player in spindle alignment, guides the bud-ward spindle pole by linking astral microtubule plus ends to Myo2p-based transport along actin cables generated by the formins Bni1p and Bnr1p and the polarity determinant Bud6p. Initially, Kar9p labels both poles but progressively singles out the bud-ward pole. Here, we show that this polarization requires cell polarity determinants, actin cables, and microtubules. Indeed, in a bud6 Delta bni1 Delta mutant or upon direct depolymerization of actin cables Kar9p symmetry increased. Furthermore, symmetry was selectively induced by myo2 alleles, preventing Kar9p binding to the Myo2p cargo domain. Kar9p polarity was rebuilt after transient disruption of microtubules, dependent on cell polarity and actin cables. Symmetry breaking also occurred after transient depolymerization of actin cables, with Kar9p increasing at the spindle pole engaging in repeated cycles of Kar9p-mediated transport. Kar9p returning to the spindle pole on shrinking astral microtubules may contribute toward this bias. Thus, Myo2p transport along actin cables may support a feedback loop by which delivery of astral microtubule plus ends sustains Kar9p polarized recruitment to the bud-ward spindle pole. Our findings also explain the link between Kar9p polarity and the choice setting aside the old spindle pole for daughter-bound fate.


Asunto(s)
Actinas/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Polaridad Celular/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Nocodazol/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Tiazolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...