Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1182556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122746

RESUMEN

Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.


Asunto(s)
Adyuvantes de Vacunas , COVID-19 , Cricetinae , Animales , Ratones , SARS-CoV-2 , Glucolípidos , Sulfatos , Células CHO , Liposomas , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , Cricetulus , Inmunidad Celular , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Archaea , Vacunas contra la COVID-19
2.
MAbs ; 15(1): 2149057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36447399

RESUMEN

Effective processes for synthesizing antibody-drug conjugates (ADCs) require: 1) site-specific incorporation of the payload to avoid interference with binding to the target epitope, 2) optimal drug/antibody ratio to achieve sufficient potency while avoiding aggregation or solubility problems, and 3) a homogeneous product to facilitate approval by regulatory agencies. In conventional ADCs, the drug molecules are chemically attached randomly to antibody surface residues (typically Lys or Cys), which can interfere with epitope binding and targeting, and lead to overall product heterogeneity, long-term colloidal instability and unfavorable pharmacokinetics. Here, we present a more controlled process for generating ADCs where drug is specifically conjugated to only Fab N-linked glycans in a narrow ratio range through functionalized sialic acids. Using a bacterial sialytransferase, we incorporated N-azidoacetylneuraminic acid (Neu5NAz) into the Fab glycan of cetuximab. Since only about 20% of human IgG1 have a Fab glycan, we extended the application of this approach by using molecular modeling to introduce N-glycosylation sites in the Fab constant region of other therapeutic monoclonal antibodies. We used trastuzumab as a model for the incorporation of Neu5NAz in the novel Fab glycans that we designed. ADCs were generated by clicking the incorporated Neu5NAz with monomethyl auristatin E (MMAE) attached to a self-immolative linker terminated with dibenzocyclooctyne (DBCO). Through this process, we obtained cetuximab-MMAE and trastuzumab-MMAE with drug/antibody ratios in the range of 1.3 to 2.5. We confirmed that these ADCs still bind their targets efficiently and are as potent in cytotoxicity assays as control ADCs obtained by standard conjugation protocols. The site-directed conjugation to Fab glycans has the additional benefit of avoiding potential interference with effector functions that depend on Fc glycan structure.


Asunto(s)
Inmunoconjugados , Polisacáridos , Humanos , Cetuximab , Epítopos , Trastuzumab , Anticuerpos Monoclonales
3.
NPJ Vaccines ; 7(1): 118, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224247

RESUMEN

Using our strongly immunogenic SmT1 SARS-CoV-2 spike antigen platform, we developed antigens based on the Beta & Delta variants of concern (VOC). These antigens elicited higher neutralizing antibody activity to the corresponding variant than comparable vaccine formulations based on the original reference strain, while a multivalent vaccine generated cross-neutralizing activity in all three variants. This suggests that while current vaccines may be effective at reducing severe disease to existing VOC, variant-specific antigens, whether in a mono- or multivalent vaccine, may be required to induce optimal immune responses and reduce infection against arising variants.

4.
PLoS One ; 17(3): e0266250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35353868

RESUMEN

The SARS coronavirus 2 (SARS-CoV-2) spike (S) protein binding to the human ACE2 receptor is the molecular event that initiates viral entry into host cells and leads to infection and virus replication. There is a need for agents blocking viral entry into host cells that are cross-reactive with emerging virus variants. VHH-72 is an anti-SARS-CoV-1 single-domain antibody that also exhibits cross-specificity with SARS-CoV-2 but with decreased binding affinity. Here we applied a structure-based approach to affinity-mature VHH-72 for the SARS-CoV-2 spike protein while retaining the original affinity for SARS-CoV-1. This was achieved by employing the computational platform ADAPT in a constrained dual-affinity optimization mode as a means of broadening specificity. Select mutants designed by ADAPT were formatted as fusions with a human IgG1-Fc fragment. These mutants demonstrated improved binding to the SARS-CoV-2 spike protein due to decreased dissociation rates. Functional testing for virus neutralization revealed improvements relative to the parental VHH72-Fc up to 10-fold using a SARS-CoV-2 pseudotyped lentivirus and 20-fold against the SARS-CoV-2 authentic live virus (Wuhan variant). Binding and neutralization improvements were maintained for some other SARS-CoV-2 variants currently in circulation. These improved VHH-72 mutants are predicted to establish novel interactions with the S antigen. They will be useful, alone or as fusions with other functional modules, in the global quest for treatments of COVID-19 infections.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos de Dominio Único , Anticuerpos Antivirales , Humanos , Unión Proteica , SARS-CoV-2/genética , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus
5.
MAbs ; 13(1): 1999194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34806527

RESUMEN

The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.


Asunto(s)
Antineoplásicos Inmunológicos , Anhidrasas Carbónicas , Anticuerpos Monoclonales/farmacología , Antígenos de Neoplasias , Biomarcadores de Tumor , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno
6.
MAbs ; 12(1): 1682866, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31777319

RESUMEN

Recent development of monoclonal antibodies as mainstream anticancer agents demands further optimization of their safety for use in humans. Potent targeting and/or effector activities on normal tissues is an obvious toxicity concern. Optimization of specific tumor targeting could be achieved by taking advantage of the extracellular acidity of solid tumors relative to normal tissues. Here, we applied a structure-based computational approach to engineer anti-human epidermal growth factor receptor 2 (Her2) antibodies with selective binding in the acidic tumor microenvironment. We used an affinity maturation platform in which dual-pH histidine-scanning mutagenesis was implemented for pH selectivity optimization. Testing of a small set of designs for binding to the recombinant Her2 ectodomain led to the identification of antigen-binding fragment (Fab) variants with the desired pH-dependent binding behavior. Binding selectivity toward acidic pH was improved by as much as 25-fold relative to the parental bH1-Fab. In vitro experiments on cells expressing intact Her2 confirmed that designed variants formatted as IgG1/k full-size antibodies have high affinity and inhibit the growth of tumor spheroids at a level comparable to that of the benchmark anti-Her2 antibody trastuzumab (Herceptin®) at acidic pH, whereas these effects were significantly reduced at physiological pH. In contrast, both Herceptin and the parental bH1 antibody exhibited strong cell binding and growth inhibition irrespective of pH. This work demonstrates the feasibility of computational optimization of antibodies for selective targeting of the acidic environment such as that found in many solid tumors.


Asunto(s)
Antineoplásicos Inmunológicos/química , Inmunoterapia/métodos , Neoplasias/terapia , Afinidad de Anticuerpos/genética , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Histidina/genética , Humanos , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Neoplasias/inmunología , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Receptor ErbB-2/inmunología , Trastuzumab/uso terapéutico , Microambiente Tumoral
7.
PLoS One ; 14(12): e0226593, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31891584

RESUMEN

An increasingly appreciated conundrum in the discovery of antibody drug conjugates (ADCs) is that an antibody that was selected primarily for strong binding to its cancer target may not serve as an optimal ADC. In this study, we performed mechanistic cell-based experiments to determine the correlation between antibody affinity, avidity, internalization and ADC efficacy. We used structure-guided design to assemble a panel of antibody mutants with predicted Her2 affinities ranging from higher to lower relative to the parent antibody, Herceptin. These antibodies were ranked for binding via SPR and via flow-cytometry on high-Her2 SKOV3 cells and low-Her2 MCF7 cells, the latter acting as a surrogate for low-Her2 normal cells. A subpanel of variants, representative of different Her2-binding affinities (2 strong, 2 moderate and 3 weak), were further screened via high-content imaging for internalization efficacies in high versus low-Her2 cells. Finally, these antibodies were evaluated in ADC cytotoxicity screening assays (using DM1 and MMAE secondary antibodies) and as antibody-drug conjugates (DM1 and PNU159682). Our results identified specific but weak Her2-binding variants as optimal candidates for developing DM1 and PNU ADCs since they exhibited high potencies (low to sub-nM) in high-Her2 SKOV3 cells and low toxicities in low-Her2 cells. The 2 strong-affinity variants were highly potent in SKOV3 cells but also showed significant toxicities in low-Her2 cells and therefore are predicted to be toxic in normal tissues. Our findings show that pharmacological profiling of an antibody library in multiple binding and functional assays allows for selection of optimal ADCs.


Asunto(s)
Inmunoconjugados/química , Inmunoconjugados/farmacología , Mutación , Receptor ErbB-2/metabolismo , Afinidad de Anticuerpos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inmunoconjugados/genética , Células Jurkat , Células MCF-7 , Receptor ErbB-2/química , Relación Estructura-Actividad , Trastuzumab/química , Trastuzumab/genética , Trastuzumab/farmacología
8.
Cytokine ; 82: 102-11, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26868085

RESUMEN

Interleukin-15 (IL-15) is essential for the homeostasis of lymphoid cells particularly memory CD8(+) T cells and NK cells. These cells are abundant in the liver, and are implicated in obesity-associated pathogenic processes. Here we characterized obesity-associated metabolic and cellular changes in the liver of mice lacking IL-15 or IL-15Rα. High fat diet-induced accumulation of lipids was diminished in the livers of mice deficient for IL-15 or IL-15Rα. Expression of enzymes involved in the transport of lipids in the liver showed modest differences. More strikingly, the liver tissues of IL15-KO and IL15Rα-KO mice showed decreased expression of chemokines CCl2, CCL5 and CXCL10 and reduced infiltration of mononuclear cells. In vitro, IL-15 stimulation induced chemokine gene expression in wildtype hepatocytes, but not in IL15Rα-deficient hepatocytes. Our results show that IL-15 is implicated in the high fat diet-induced lipid accumulation and inflammation in the liver, leading to fatty liver disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Hepatocitos/inmunología , Memoria Inmunológica , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Quimiocinas/genética , Quimiocinas/inmunología , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Interleucina-15/genética , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Receptores de Interleucina-15/inmunología
9.
Cytokine ; 82: 95-101, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26778709

RESUMEN

IL-15 is a member of the gamma chain family of cytokines (γc - CD132). The IL-15 receptor (IL-15R) complex consists of 3 subunits: the ligand-binding IL-15Rα chain (CD215), the ß chain (CD122; also used by IL-2), and the common γ chain. The biological activities of IL-15 are mostly mediated by the IL-15:IL-15Rα complex, produced by the same cell and 'trans-presented' to responder cells expressing the IL-15Rßγc. The peculiar and almost unique requirement for IL-15 to be trans-presented by IL-15Rα suggests that the biological effects of IL-15 signaling are tightly regulated even at the level of availability of IL-15. Tissue-specific deletion of IL-15Rα has shown macrophage-and dendritic cell-derived IL-15Rα mediate the homeostasis of different CD8(+) T cell subsets. Here we show that hepatocyte and macrophage- specific expression of IL-15Rα is required to maintain the homeostasis of NK and NKT cells in the liver. Thus, homeostasis of IL-15-dependent lymphocyte subsets is also regulated by trans-presentation of IL-15 by non-hematopoietic cells in the tissue environment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Homeostasis/inmunología , Interleucina-15/inmunología , Hígado/inmunología , Transducción de Señal/inmunología , Animales , Células Dendríticas/inmunología , Homeostasis/genética , Interleucina-15/genética , Macrófagos/inmunología , Ratones , Ratones Noqueados , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/inmunología , Transducción de Señal/genética
10.
Cell Mol Immunol ; 11(4): 387-97, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24658435

RESUMEN

Interleukin-15 (IL-15) is essential for the survival of memory CD8(+) and CD4(+) T cell subsets, and natural killer and natural killer T cells. Here, we describe a hitherto unreported role of IL-15 in regulating homoeostasis of naive CD4(+) T cells. Adoptive transfer of splenocytes from non-obese diabetic (NOD) mice results in increased homeostatic expansion of T cells in lymphopenic NOD.scid.Il15(-/-) mice when compared to NOD.scid recipients. The increased accumulation of CD4(+) T cells is also observed in NOD.Il15(-/-) mice, indicating that IL-15-dependent regulation also occurs in the absence of lymphopenia. NOD.scid mice lacking the IL-15Rα chain, but not those lacking the common gamma chain, also show increased accumulation of CD4(+) T cells. These findings indicate that the IL-15-mediated regulation occurs directly on CD4(+) T cells and requires trans-presentation of IL-15. CD4(+) T cells expanding in the absence of IL-15 signaling do not acquire the characteristics of classical regulatory T cells. Rather, CD4(+) T cells expanding in the absence of IL-15 show impaired antigen-induced activation and IFN-γ production. Based on these findings, we propose that the IL-15-dependent regulation of the naive CD4(+) T-cell compartment may represent an additional layer of control to thwart potentially autoreactive cells that escape central tolerance, while permitting the expansion of memory T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Homeostasis , Interleucina-15/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Proliferación Celular/genética , Células Cultivadas , Interferón gamma/metabolismo , Interleucina-15/genética , Subunidad alfa del Receptor de Interleucina-15/genética , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Curr Pharm Des ; 20(17): 2922-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23944359

RESUMEN

The SOCS1 gene is a frequent target of epigenetic repression in hepatocellular carcinoma. Many other types of cancer also harbor methylated SOCS1 gene. Besides, recent studies implicate microRNAs targeting SOCS1 in cancer progression. These findings suggest a broad tumor suppressor role of SOCS1 and have stimulated the quest to elucidate the underlying molecular mechanisms. The essential physiological function of SOCS1 is to attenuate interferon gamma signaling in immune cells. SOCS1 binds activated JAK kinases and the receptor chains of several cytokines, some of which are implicated in cancer progression. SOCS1 also facilitates ubiquitination and proteasomal degradation of many signaling molecules downstream of cytokine and growth factor receptors. We have shown that SOCS1 inhibits signaling via the hepatocyte growth factor receptor c-MET in hepatocytes. Aberrant MET signaling, implicated in the progression of many types of cancers, also contributes to the development of chemoresistance to tyrosine kinase inhibitors and drugs targeting other oncogenic signaling pathways. Here, we discuss the SOCS1-dependent regulation of MET signaling as an important mechanism underlying the tumor suppressor role of SOCS1 that is relevant not only to hepatocellular carcinoma but also to other types of cancers.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proliferación Celular , Citocinas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs , Modelos Biológicos , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Receptores de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...