Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vision (Basel) ; 8(3)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39189185

RESUMEN

The aim of the study was to determine the normative data of the computerized DEM test for school-age children in Latvia. The study analyzed data on the performance (test execution time, duration, number of fixations, and number of errors) of 291 children while completing the computerized DEM test. Eye movement fixations were recorded with a Tobii Pro Fusion video-oculograph (250 Hz). According to the results of the study, the performance of the computerized DEM test is 77 %. For the study, 1 SD (one standard deviation) was chosen as a criterion for determining test norms. In the study, the norms of the computerized DEM test in Latvia were developed in class groups-from 1st to 6th grade (aged 7 to 12 years), the results were summarized in a table as the minimum performance values of the computerized DEM test.

2.
Vision (Basel) ; 7(4)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37873896

RESUMEN

(1) Background: Saccadic eye movements are rapid eye movements aimed to position the object image on the central retina, ensuring high-resolution data sampling across the visual field. Although saccadic eye movements are studied extensively, different experimental settings applied across different studies have left an open question of whether and how stimulus parameters can affect the saccadic performance. The current study aims to explore the effect of stimulus contrast and spatial position on saccadic eye movement latency, peak velocity and accuracy measurements. (2) Methods: Saccadic eye movement targets of different contrast levels were presented at four different spatial positions. The eye movements were recorded with a Tobii Pro Fusion video-oculograph (250 Hz). (3) Results: The results demonstrate a significant effect of stimulus spatial position on the latency and peak velocity measurements at a medium grey background, 30 cd/m2 (negative and positive stimulus polarity), light grey background, 90 cd/m2 (negative polarity), and black background, 3 cd/m2 (positive polarity). A significant effect of the stimulus spatial position was observed on the accuracy measurements when the saccadic eye movement stimuli were presented on a medium grey background (negative polarity) and on a black background. No significant effect of stimulus contrast was observed on the peak velocity measurements under all conditions. A significant stimulus contrast effect on latency and accuracy was observed only on a light grey background. (4) Conclusions: The best saccadic eye movement performance (lowest latency, highest peak velocity and accuracy measurements) can be observed when the saccades are oriented to the right and left from the central fixation point. Furthermore, when presenting the stimulus on a light grey background, a very low contrast stimuli should be considered carefully.

3.
Brain Sci ; 13(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979190

RESUMEN

Biological motion perception is a specific type of perceptual organization, during which a clear image of a moving human body is perceptually generated in virtue of certain core light dots representing the major joint movements. While the processes of biological motion perception have been studied extensively for almost a century, there is still a debate on whether biological motion task performance can be equally precise across all visual field or is central visual field specified for biological motion perception. The current study explores the processes of biological motion perception and figure-ground segmentation in the central and peripheral visual field, expanding the understanding of perceptual organization across different eccentricities. The method involved three different tasks of visual grouping: (1) a static visual grouping task, (2) a dynamic visual grouping task, and (3) a biological motion detection task. The stimuli in (1) and (2) were generated from 12-13 dots grouped by proximity and common fate, and, in (3), light dots representing human motion. All stimuli were embedded in static or dynamics visual noise and the threshold value for the number of noise dots in which the elements could still be grouped by proximity and/or common fate was determined. The results demonstrate that biological motion can be differentiated from the scrambled set of moving dots in a more intensive visual noise than static and dynamic visual grouping tasks. Furthermore, in all three visual tasks (static and dynamic grouping, and biological motion detection) the performance was significantly worse in the periphery than in the central visual field, and object magnification could not compensate for the reduced performance in any of the three grouping tasks. The preliminary results of nine participants indicate that (a) human motion perception involves specific perceptual processes, providing the high-accuracy perception of the human body and (b) the processes of figure-ground segmentation are governed by the bottom-up processes and the best performance can be achieved only when the object is demonstrated in the central visual field.

4.
J Eye Mov Res ; 16(3)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38370528

RESUMEN

The aim of the study was to analyze the stability of dominant and non-dominant eye fixations, as well as the influence of development on fixation stability. The study analyzed fixation stability in 280 school-age children, ranging in age from 7 to 12 years old. Fixation stability was determined by calculating the bivariate contour ellipse area (BCEA). During the fixation task, eye movements were recorded using the Tobii Pro Fusion eye tracking device at a 250 Hz sampling frequency. The results indicate that the fixation stability of dominant and non-dominant eyes, as well as the fixation stability of each eye regardless of dominance, improves as children grow older. It was found that for 7 and 8- year-old children, fixation in the dominant eye is significantly more stable than in the non-dominant eye, while in older children, there is no significant difference in fixation stability between the dominant and non-dominant eye.

5.
Iperception ; 12(2): 2041669521998392, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145615

RESUMEN

This study explores perceptual organisation and shape perception when viewing a tetragon and an additional element (a dot) that is located at varying positions and distances next to the tetragon. The aim of the study is to determine the factors that can alter the interpretation of object configuration and impact whether the presented tetragon is perceived as a diamond or a square. Methods used in this study are a forced-choice task as a subjective measurement and eye tracking as an objective measurement of perceptual processes. Overall, 31 stimuli were presented to the participants: a tetragon in two different sizes with an additional element (a dot) located inside or outside the object at three different positions at three distances. The results indicate significant changes in shape perception, depending on the location of the additional element. The results are complemented with eye movement analysis indicating that as the distance between the elements increases, there is a higher probability of either of the two shape interpretations and the gaze is less likely to be directed to the area between the stimuli. Furthermore, the subjective perception of shape is codetermined by the shape perception when the tetragon is presented without the additional element.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...