Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Photonics ; 10(6): 1925-1935, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37363634

RESUMEN

Lattice resonances are collective electromagnetic modes supported by periodic arrays of metallic nanostructures. These excitations arise from the coherent multiple scattering between the elements of the array and, thanks to their collective origin, produce very strong and spectrally narrow optical responses. In recent years, there has been significant effort dedicated to characterizing the lattice resonances supported by arrays built from complex unit cells containing multiple nanostructures. Simultaneously, periodic arrays with chiral unit cells, made of either an individual nanostructure with a chiral morphology or a group of nanostructures placed in a chiral arrangement, have been shown to exhibit lattice resonances with different responses to right- and left-handed circularly polarized light. Motivated by this, here, we investigate the lattice resonances supported by square bipartite arrays in which the relative positions of the nanostructures can vary in all three spatial dimensions, effectively functioning as 2.5-dimensional arrays. We find that these systems can support lattice resonances with almost perfect chiral responses and very large quality factors, despite the achirality of the unit cell. Furthermore, we show that the chiral response of the lattice resonances originates from the constructive and destructive interference between the electric and magnetic dipoles induced in the two nanostructures of the unit cell. Our results serve to establish a theoretical framework to describe the optical response of 2.5-dimensional arrays and provide an approach to obtain chiral lattice resonances in periodic arrays with achiral unit cells.

2.
J Chem Theory Comput ; 19(20): 6933-6991, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37216210

RESUMEN

The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.

3.
Molecules ; 27(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35807506

RESUMEN

Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties are typically investigated to characterize the potentiality of a novel material for lasers, and a low ASE threshold is used as the key parameter to select the best candidate. However, several different methods are currently used to define the ASE threshold, hindering meaningful comparisons among various materials. In this work, we quantitatively investigate the ASE threshold dependence on the method used to determine it in thin films of dye-polymer blends and lead halide perovskites. We observe a systematic ASE threshold dependence on the method for all the different tested materials, and demonstrate that the best method choice depends on the kind of information one wants to extract. In particular, the methods that provide the lowest ASE threshold values are able to detect the excitation regime of early-stage ASE, whereas methods that are mostly spread in the literature return higher thresholds, detecting the excitation regime in which ASE becomes the dominant process in the sample emission. Finally, we propose a standard procedure to properly characterize the ASE threshold, in order to allow comparisons between different materials.

4.
Phys Chem Chem Phys ; 24(28): 16979-16987, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35731548

RESUMEN

In view of the existing controversy around the origin of the photosynthesis and, therefore, the first photosynthetic pigments, our work focuses on the theoretical study of a hypothetical first pigment, simpler than those existing today, that collects energy from solar radiation on Earth-like exoplanets. Our theoretical results show that there could exist geochemical conditions that allow the abiotic formation of a primeval pigment that might become sufficiently abundant in the early stages of habitable rocky exoplanets. These conditions would place this pigment before the appearance of life in a very young planet, thanks to chemical routes instead of biochemical transformations. Thus, our results may refute the currently accepted hypothesis that the complex biomolecules that allowed the photosynthesis to be carried out were synthesized through complex and evolved metabolic pathways. In addition, we show that the proposed primeval pigment, which we call Phot0, is also a precursor of the more evolved pigments known today on Earth and demonstrate, for the first time, an abiotic chemical route leading to tetrapyrroles not involving pyrrole derivatives. Our proposal places simple and very abundant raw materials in never-before-proposed geochemical conditions that lead to the formation of biomolecules of biological interest.


Asunto(s)
Planeta Tierra , Planetas , Medio Ambiente Extraterrestre , Modelos Teóricos , Fotosíntesis
6.
J Chem Theory Comput ; 18(5): 3052-3064, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35481363

RESUMEN

The theoretical prediction of molecular electronic spectra by means of quantum mechanical (QM) computations is fundamental to gain a deep insight into many photophysical and photochemical processes. A computational strategy that is attracting significant attention is the so-called Nuclear Ensemble Approach (NEA), that relies on generating a representative ensemble of nuclear geometries around the equilibrium structure and computing the vertical excitation energies (ΔE) and oscillator strengths (f) and phenomenologically broadening each transition with a line-shaped function with empirical full-width δ. Frequently, the choice of δ is carried out by visually finding the trade-off between artificial vibronic features (small δ) and over-smoothing of electronic signatures (large δ). Nevertheless, this approach is not satisfactory, as it relies on a subjective perception and may lead to spectral inaccuracies overall when the number of sampled configurations is limited due to an excessive computational burden (high-level QM methods, complex systems, solvent effects, etc.). In this work, we have developed and tested a new approach to reconstruct NEA spectra, dubbed GMM-NEA, based on the use of Gaussian Mixture Models (GMMs), a probabilistic machine learning algorithm, that circumvents the phenomenological broadening assumption and, in turn, the use of δ altogether. We show that GMM-NEA systematically outperforms other data-driven models to automatically select δ overall for small datasets. In addition, we report the use of an algorithm to detect anomalous QM computations (outliers) that can affect the overall shape and uncertainty of the NEA spectra. Finally, we apply GMM-NEA to predict the photolysis rate for HgBrOOH, a compound involved in Earth's atmospheric chemistry.


Asunto(s)
Aprendizaje Automático , Teoría Cuántica , Electrónica , Solventes/química
7.
Inorg Chem ; 59(23): 17058-17070, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33166444

RESUMEN

We present the first examples of alkylated derivatives of the macropolyhedral boron hydride, anti-B18H22, which is the gain medium in the first borane laser. This new series of ten highly stable and colorless organic-inorganic hybrid clusters are capable of the conversion of UVA irradiation to blue light with fluorescence quantum yields of unity. This study gives a comprehensive description of their synthesis, isolation, and structural characterization together with a delineation of their photophysical properties using a combined theoretical and experimental approach. Treatment of anti-B18H22 1 with RI (where R = Me or Et) in the presence of AlCl3 gives a series of alkylated derivatives, Rx-anti-B18H22-x (where x = 2 to 6), compounds 2-6, in which the 18-vertex octadecaborane cluster architectures are preserved and yet undergo a linear "polyhedral swelling", depending on the number of cluster alkyl substituents. The use of dichloromethane solvent in the synthetic procedure leads to dichlorination of the borane cluster and increased alkylation to give Me11-anti-B18H9Cl2 11, Me12-anti-B18H8Cl2 12, and Me13-anti-B18H7Cl2 13. All new alkyl derivatives are highly stable, extremely efficient (ΦF = 0.76-1.0) blue fluorophores (λems = 423-427 nm) and are soluble in a wide range of organic solvents and also a polystyrene matrix. The Et4-anti-B18H18 derivative 4b crystallizes from pentane solution in two phases with consequent multiabsorption and multiemission photophysical properties. An ultrafast transient UV-vis absorption spectroscopic study of compounds 4a and 4b reveals that an efficient excited-state absorption at the emission wavelength inhibits the laser performance of these otherwise remarkable luminescent molecules. All these new compounds add to the growing portfolio of octadecaborane-based luminescent species, and in an effort to broaden the perspective on their highly emissive photophysical properties, we highlight emerging patterns that successive substitutions have on the molecular size of the 18-vertex borane cluster structure and the distribution of the electron density within.

8.
J Org Chem ; 84(5): 2523-2541, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30701973

RESUMEN

We took advantage of the chemoselective meso-functionalization of 2,3,5,6-tetrabromo-8-methylthioBODIPY 6 to prepare a series of 2,3,5,6-tetrabromo-8-arylBODIPY derivatives suitable for SNAr substitution reactions with phenols exclusively at positions 3 and 5. Pd(0)-catalyzed intramolecular arylation reaction ensued on the remaining brominated positions 2 and 6 to give a new family of benzofuran-fused BODIPY dyes. This method utilizes readily available starting materials and allows for the preparation of the title compounds with excellent functional group tolerance. Moreover, it was demonstrated that the methodology described herein is amenable for the incorporation of biomolecules. The photophysical and lasing properties of the benzofuran-fused BODIPY dyes were thoroughly analyzed with the aid of electrochemical measurements and quantum mechanical simulations. These dyes show bright and intriguing emission (both fluorescence and laser) toward the red edge of the visible spectrum with remarkable tolerance under strong and continuous irradiation.

9.
Chemistry ; 24(15): 3802-3815, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29314331

RESUMEN

Stereochemical and steric control of the relative spatial arrangement of the chromophoric units in multichromophoric systems offers an interesting strategy for raising unusual and appealing light-induced emission states. To explore and exploit this strategy, a series of conformationally restricted boron-dipyrromethene (BODIPY) dimers were designed by using tartaric acid as a symmetrical connector between the boron atoms of the dyes. The variety of stereoisomeric forms available for this bis(hydroxy acid) allows the relative spatial orientation of the chromophoric units in the dimer to be modified, which thus opens the door to modulation of the photophysical and chiroptical properties of the new bichromophoric systems. Chromophore alkylation introduces an additional level of control through distance-dependent steric interactions between the BODIPY units in the dimer, which also modulates their relative spatial disposition and properties.

10.
Opt Lett ; 42(24): 5258-5261, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29240187

RESUMEN

The Variable Stripe Length (VSL) method is a very popular tool to measure the optical gain in thin film active devices. However, over the last decade experimental and theoretical evidence has been reported that cast doubt upon its reliability and that seriously discourages its application. Continuing in the path of highlighting the uncertainties associated with this method, this Letter soundly demonstrates that the particular choice of stripe lengths in the VSL measurements profoundly influences the optical gains retrieved by this method. Thus, a single set of VSL data may render gain values that differ by tens of cm-1. The observed gain variability is ascribed to a combination of unavoidable experimental noise and incorrect assumptions in the analytical treatment (small-signal approximation).

11.
J Phys Chem C Nanomater Interfaces ; 121(9): 5287-5292, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28993793

RESUMEN

The direct generation of efficient, tunable, and switchable circularly polarized laser emission (CPLE) would have far-reaching implications in photonics and material sciences. In this paper, we describe the first chiral simple organic molecules (SOMs) capable of simultaneously sustaining significant chemical robustness, high fluorescence quantum yields, and circularly polarized luminescence (CPL) ellipticity levels (|glum|) comparable to those of similar CPL-SOMs. All these parameters altogether enable efficient laser emission and CPLE with ellipticity levels 2 orders of magnitude stronger than the intrinsic CPL ones.

12.
Phys Chem Chem Phys ; 19(33): 22088-22093, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28795713

RESUMEN

The generation of circularly polarized laser emission (CPLE) in photonic devices has attracted increasing attention due to the prospects of using CP light in displaying technologies or advanced microscopies. Organic systems excel as laser materials across the whole visible spectrum, and despite many of them displaying circularly polarized luminescence (CPL), none have been shown thus far to amplify their own CPL, let alone generate CPLE. Consequently, there is still a need to find alternative CPLE organic devices. Herein we demonstrate an effective strategy for achieving strong levels of CPLE (|glum| ∼ 0.1-0.2) by using solutions of an achiral dye dissolved in optically active solvents to exploit the full potential of the dynamic birefringence induced by the intense and polarized laser pumping. The present approach enables changing the CPLE handedness by changing the handedness of the solvent optical activity, opening new avenues for developing cost-effective and easily processable chiro-photonic materials.

13.
Chemistry ; 23(39): 9383-9390, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28467651

RESUMEN

N-BODIPYs (diaminoboron dipyrromethenes) are unveiled as a new family of BODIPY dyes with huge technological potential. Synthetic access to these systems has been gained through a judicious design focused on stabilizing the involved diaminoboron chelate. Once stabilized, the obtained N-BODIPYs retain the effective photophysical behavior exhibited by other boron-substituted BODIPYs, such as O-BODIPYs. However, key bonding features of nitrogen compared to those of oxygen (enhanced bond valence and different bond directionality) open up new possibilities for functionalizing BODIPYs, allowing an increase in the number of pendant moieties (from two in O-BODIPYs, up to four in N-BODIPYs) near the chromophore and, therefore, greater control of the photophysics. As a proof of concept, the following findings are discussed: (1) the low-cost and straightforward synthesis of a selected series of N-BODIPYs; (2) their outstanding photophysical properties compared to those of related effective dyes (excellent emission signatures, including fluorescence in the solid state; notable lasing capacities in the liquid phase and when doped into polymers; improved laser performance compared to the parent F-BODIPYs); (3) the versatility of the diaminoboron moiety in allowing the generation of multifunctionalized BODIPYs, permitting access to both symmetric and asymmetric dyes; (4) the capability of such versatility to finely modulate the dye photophysics towards different photonic applications, from lasing to chemosensing.

14.
ACS Appl Mater Interfaces ; 9(10): 8948-8959, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28207230

RESUMEN

We present a low-temperature versatile protocol for the fabrication of plasma nanocomposite thin films to act as tunable emitters and optical gain media. The films are obtained by the remote plasma-assisted deposition of a 4-(dicyano-methylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) laser dye alongside adamantane. The experimental parameters that determine the concentration of the dye in the films and their optical properties, including light absorption, the refractive index, and luminescence, are evaluated. Amplified spontaneous emission experiments in the DCM/adamantane nanocomposite waveguides show the improvement of the copolymerized nanocomposites' properties compared to films that were deposited with DCM as the sole precursor. Moreover, one-dimensional distributed feed-back laser emission is demonstrated and characterized in some of the nanocomposite films that are studied. These results open new paths for the optimization of the optical and lasing properties of plasma nanocomposite polymers, which can be straightforwardly integrated as active components in optoelectronic devices.

15.
Bioresour Technol ; 216: 904-13, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27323242

RESUMEN

In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content.


Asunto(s)
Biocombustibles , Fraccionamiento Químico/métodos , Lipasa/metabolismo , Lípidos/aislamiento & purificación , Microalgas/química , Estramenopilos/química , Biomasa , Biotecnología/métodos , Catálisis , Enzimas Inmovilizadas , Esterificación , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas Fúngicas , Lipasa/química , Lípidos/química , Microalgas/metabolismo , Solventes/química , Estramenopilos/metabolismo , Alcohol terc-Butílico
16.
Sci Rep ; 6: 28740, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350073

RESUMEN

The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes.

17.
Bioresour Technol ; 203: 236-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26735878

RESUMEN

Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch.


Asunto(s)
Biocombustibles , Lipasa/química , Lípidos/química , Rhizopus/enzimología , Estramenopilos/química , Biomasa , Catálisis , Esterificación , Metanol/química , Alcohol terc-Butílico
18.
Bioresour Technol ; 187: 346-353, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25863898

RESUMEN

Fatty acid methyl esters (FAMEs, biodiesel) were produced from Nannochloropsis gaditana wet biomass (12% saponifiable lipids, SLs) by extraction of SLs and lipase catalyzed transesterification. Lipids were extracted by ethanol (96%)-hexane, and 31% pure SLs were obtained with 85% yield. When the lipids were degummed, SL purity increased to 95%. Novozym 435 was selected from four lipases tested. Both the lipidic composition and the use of t-butanol instead of hexane increased the reaction velocity and the conversion, since both decreased due to the adsorption of polar lipids on the lipase immobilization support. The best FAME yield (94.7%) was attained at a reaction time of 48h and using 10mL of t-butanol/g SL, 0.225gN435/g SL, 11:1 methanol/SL molar ratio and adding the methanol in three steps. In these conditions the FAME conversion decreased by 9.8% after three reaction cycles catalyzed by the same lipase batch.


Asunto(s)
Biocombustibles/microbiología , Ácidos Grasos/síntesis química , Lipasa/química , Metabolismo de los Lípidos/fisiología , Lípidos/química , Estramenopilos/metabolismo , Ésteres , Electricidad Estática
19.
J Biosci Bioeng ; 119(6): 706-11, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25575971

RESUMEN

The aim of this work was to obtain biodiesel (methyl esters) from the saponifiable lipids (SLs) fraction of the microalga Nannochloropsis gaditana, whose biomass dry weight contains 12.1 wt% of these lipids. SLs were extracted from the microalga as free fatty acids (FFAs) for subsequent transformation to methyl esters (biodiesel) by enzymatic esterification. Extraction as FFAs rather than as SLs allows them to be obtained with higher purity. Microalgal FFAs were obtained by direct saponification of lipids in the biomass and subsequent extraction-purification with hexane. Esterification of FFAs with methanol was catalysed by lipase Novozym 435 from Candida antarctica. Stability studies of this lipase in the operational conditions showed that the esterification degree (ED) attained with the same batch of lipase remained constant over six reaction cycles (36 h total reaction time). The optimal conditions attained for 4 g of FFAs were 25°C, 200 rpm, methanol/FFA molar ratio of 1.5:1, Novozym 435/FFA ratio of 0.025:1 w/w and 4 h reaction time. In these conditions the ED attained was 92.6%, producing a biodiesel with 83 wt% purity from microalgal FFAs. Several experimental scales were tested (from 4 to 40 g FFAs), and in all cases similar EDs were obtained.


Asunto(s)
Biocombustibles/provisión & distribución , Esterificación , Ácidos Grasos no Esterificados/aislamiento & purificación , Ácidos Grasos no Esterificados/metabolismo , Lipasa/metabolismo , Microalgas/metabolismo , Aceites de Plantas/metabolismo , Biocatálisis , Biocombustibles/análisis , Biomasa , Candida/enzimología , Catálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas , Ésteres/síntesis química , Ésteres/química , Ésteres/metabolismo , Proteínas Fúngicas , Hexanos/química , Metabolismo de los Lípidos , Metanol/química , Microalgas/química , Aceites de Plantas/química , Temperatura , Factores de Tiempo
20.
Nat Commun ; 6: 5958, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25583133

RESUMEN

Emission from electronically excited species forms the basis for an important class of light sources-lasers. So far, commercially available solution-processed blue-emitting laser materials are based on organic compounds or semiconductor nanocrystals that have significant limitations: either low solubility, low chemical- and/or photo-stability and/or uncompetitive prices. Here we report a novel and competitive alternative to these existing laser materials that is based on boron hydrides, inorganic cluster compounds with a rich and diverse chemistry. We demonstrate that solutions of the borane anti-B18H22 show, under pulsed excitation, blue laser emission at 406 nm with an efficiency (ratio of output/input energies) of 9.5%, and a photostability superior to many of the commercially available state-of-the-art blue laser dyes. This demonstration opens the doors for the development of a whole new class of laser materials based on a previously untapped resource for laser technology-the boranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA