Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Aging Cell ; : e14263, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961613

RESUMEN

Frailty is a geriatric, multi-dimensional syndrome that reflects multisystem physiological change and is a transversal measure of reduced resilience to negative events. It is characterized by weakness, frequent falls, cognitive decline, increased hospitalization and dead and represents a risk factor for the development of Alzheimer's disease (AD). The fact that frailty is recognized as a reversible condition encourages the identification of earlier biomarkers to timely predict and prevent its occurrence. SAMP8 (Senescence-Accelerated Mouse Prone-8) mice represent the most appropriate preclinical model to this aim and were used in this study to carry transcriptional and metabolic analyses in the brain and plasma, respectively, upon a characterization at cognitive, motor, structural, and neuropathological level at 2.5, 6, and 9 months of age. At 2.5 months, SAMP8 mice started displaying memory deficits, muscle weakness, and motor impairment. Functional alterations were associated with a neurodevelopmental deficiency associated with reduced neuronal density and glial cell loss. Through transcriptomics, we identified specific genetic signatures well distinguishing SAMP8 mice at 6 months, whereas plasma metabolomics allowed to segregate SAMP8 mice from SAMR1 already at 2.5 months of age by detecting constitutively lower levels of acylcarnitines and lipids in SAMP8 at all ages investigated correlating with functional deficits and neuropathological signs. Our findings suggest that specific genetic alterations at central level, as well as metabolomic changes in plasma, might allow to early assess a frail condition leading to dementia development, which paves the foundation for future investigation in a clinical setting.

2.
Cancer Cell Int ; 24(1): 220, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926706

RESUMEN

BACKGROUND: A reliable preclinical model of patient-derived organoids (PDOs) was developed in a case study of a 69-year-old woman diagnosed with breast cancer (BC) to investigate the tumour evolution before and after neoadjuvant chemotherapy and surgery. The results were achieved due to the development of PDOs from tissues collected before (O-PRE) and after (O-POST) treatment. METHODS: PDO cultures were characterized by histology, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy, flow cytometry, real-time PCR, bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) and drug screening. RESULTS: Both PDO cultures recapitulated the histological and molecular profiles of the original tissues, and they showed typical mammary gland organization, confirming their reliability as a personalized in vitro model. Compared with O-PRE, O-POST had a greater proliferation rate with a significant increase in the Ki67 proliferation index. Moreover O-POST exhibited a more stem-like and aggressive phenotype, with increases in the CD24low/CD44low and EPCAMlow/CD49fhigh cell populations characterized by increased tumour initiation potential and multipotency and metastatic potential in invasive lobular carcinoma. Analysis of ErbB receptor expression indicated a decrease in HER-2 expression coupled with an increase in EGFR expression in O-POST. In this context, deregulation of the PI3K/Akt signalling pathway was assessed by transcriptomic analysis, confirming the altered transcriptional profile. Finally, transcriptomic single-cell analysis identified 11 cell type clusters, highlighting the selection of the luminal component and the decrease in the number of Epithelial-mesenchymal transition cell types in O-POST. CONCLUSION: Neoadjuvant treatment contributed to the enrichment of cell populations with luminal phenotypes that were more resistant to chemotherapy in O-POST. PDOs represent an excellent 3D cell model for assessing disease evolution.

3.
Stem Cell Res ; 78: 103468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852424

RESUMEN

Hypomyelinating leukodystrophies (HLD) are a group of heterogeneous genetic disorders characterized by a deficit in myelin deposition during brain development. Specifically, 4H-Leukodystrophy is a recessive disease due to biallelic mutations in the POLR3A gene, which encodes one of the subunits forming the catalytic core of RNA polymerase III (PolIII). The disease also presents non-neurological signs such as hypodontia and hypogonadotropic hypogonadism. Here, we report the generation of a human induced pluripotent stem cell (hiPSC) line from fibroblasts of the first identified carrier of the biallelic POLR3A variants c.1802 T > A and c.4072G > A.


Asunto(s)
Células Madre Pluripotentes Inducidas , ARN Polimerasa III , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Línea Celular , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Masculino , Alelos
4.
Wiley Interdiscip Rev RNA ; 15(3): e1854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831585

RESUMEN

Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.


Asunto(s)
Epigénesis Genética , Humanos , ARN/metabolismo , ARN/genética , Animales
5.
Pediatr Neurol ; 157: 118-126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914025

RESUMEN

BACKGROUND: Since the initial description of glucose transporter-1 deficiency syndrome (Glut1-DS) the phenotype of the condition has expanded, even leading to the recognition of atypical manifestations. We report on eight patients with Glut1-DS who experienced at least one episode of acute focal neurological deficits. METHODS: We conducted a retrospective analysis, collecting clinical, electrophysiological, neuroradiological, and genetic information. We focused in particular on three well-documented cases. RESULTS: Among 42 patients with Glut1-DS, eight individuals aged between six and 38 years presented with an acute onset of neurological disturbances: dysarthria/aphasia, oral dyskinesia, swallowing difficulties, paresthesia, facial palsy, hemi/monoplegia, vomiting, headache, and behavioral disturbances. When performed, magnetic resonance imaging (MRI) revealed signs of venous congestion and hypoperfusion and electroencephalography showed focal contralateral slowing. Deficits were transient in all patients but one. Four patients (50%) were on a ketogenic diet (KD), and two of these patients had lower than usual ketonemia levels during the episode. In two patients, MRI demonstrated the presence of an ischemic brain lesion. CONCLUSIONS: In Glut1-DS, stroke-like episodes are a recurrent manifestation, particularly during early adulthood, and they were reported in 19% of the patients in our cohort. Stroke mimics should be considered a key feature of Glut1-DS, as other paroxysmal disorders. It remains to be established whether a KD can prevent the recurrence of episodes and, if so, at what level of ketosis. Further observations are needed to confirm the correlation between Glut1-DS and ischemic stroke.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Proteínas de Transporte de Monosacáridos , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Niño , Errores Innatos del Metabolismo de los Carbohidratos/complicaciones , Errores Innatos del Metabolismo de los Carbohidratos/diagnóstico , Errores Innatos del Metabolismo de los Carbohidratos/fisiopatología , Adulto , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Adolescente , Estudios Retrospectivos , Adulto Joven , Recurrencia , Imagen por Resonancia Magnética , Transportador de Glucosa de Tipo 1/deficiencia , Transportador de Glucosa de Tipo 1/genética , Electroencefalografía , Encéfalo/diagnóstico por imagen , Encéfalo/patología
6.
Mol Hum Reprod ; 30(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38745364

RESUMEN

The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.


Asunto(s)
Células del Cúmulo , Vesículas Extracelulares , MicroARNs , Oocitos , Animales , Células del Cúmulo/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Oocitos/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Ratones , Femenino , Técnicas de Maduración In Vitro de los Oocitos , Oogénesis/genética , Zona Pelúcida/metabolismo
7.
Clin Chim Acta ; 558: 119673, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621588

RESUMEN

Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), ß-hydroxy-ß methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).


Asunto(s)
Vuelo Espacial , Humanos , Biomarcadores/metabolismo , Biomarcadores/sangre , Planeta Tierra , Astronautas
8.
Mov Disord ; 39(6): 1060-1065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436488

RESUMEN

BACKGROUND: SNCA p.V15A was reported in five families. In vitro models showed increased aggregation and seeding activity, mitochondrial damage, and apoptosis. Mutant flies had reduced flying ability and survival. OBJECTIVES: To clinically and functionally evaluate SNCA p.V15A in a large Italian family with Parkinson's disease (PD). METHODS: Genetic diagnosis was reached through next-generation sequencing. Pathogenicity was assessed by molecular dynamics simulation and biochemical studies on peripheral blood mononuclear cells (PBMCs). RESULTS: Five siblings carried SNCA p.V15A; three developed bradykinetic-rigid PD in their 50s with rapid motor progression and variable cognitive impairment. A fourth sibling had isolated mood disturbance, whereas the fifth was still unaffected at age 47. The mutant protein showed decreased stability and an unstable folded structure. Proband's PBMCs showed elevated total and phosphorylated α-synuclein (α-syn) levels and significantly reduced glucocerebrosidase activity. CONCLUSION: This study demonstrates accumulation of α-synV15A in PBMCs and strengthens the link between α-syn pathophysiology and glucocerebrosidase dysfunction. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Glucosilceramidasa/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Leucocitos Mononucleares/metabolismo , Linaje , Mutación/genética , Anciano
10.
Mol Genet Metab Rep ; 39: 101074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544910

RESUMEN

Each year thousands of babies are born with rare genetic disorders not identified by current NBS panels, due to programs which are not yet optimal. Next-generation sequencing technologies have the potential to overcome many NBS drawbacks and provide large amounts of molecular data, broadening the number of diseases investigated. Here, we design and set up an NGS-based approach to evaluate the feasibility of NGS from dried blood spot starting from 34 DBSs. After assessing gDNA yield and integrity, libraries were performed using three target enrichment approaches, sequenced on NS500 platform, and analyzed on commercial platform. Specifically, we focus on virtual gene panels related to highly actionable neonatal/pediatric disorders. WES show that amount and quality of DBS-extracted gDNA are suitable for high-throughput sequencing. We obtain 500-1500 ng for each specimen, 1.7-1.8 260/280 wavelength, and DIN of 7 resulting DNA integrity, on par with traditional venous blood collection. A high read depth with 94.3% coverage uniformity is achieved for all samples. Data results on mean coverage are comparable among the different workflows tested and demonstrate that DBS from newborn collected at birth is a suitable material for the developing of gNBS programs.

11.
Cell Prolif ; : e13627, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421110

RESUMEN

The central nervous system (CNS) is surrounded by three membranes called meninges. Specialised fibroblasts, originating from the mesoderm and neural crest, primarily populate the meninges and serve as a binding agent. Our goal was to compare fibroblasts from meninges and skin obtained from the same human-aged donors, exploring their molecular and cellular characteristics related to CNS functions. We isolated meningeal fibroblasts (MFs) from brain donors and skin fibroblasts (SFs) from the same subjects. A functional analysis was performed measuring cell appearance, metabolic activity, and cellular orientation. We examined fibronectin, serpin H1, ß-III-tubulin, and nestin through qPCR and immunofluorescence. A whole transcriptome analysis was also performed to characterise the gene expression of MFs and SFs. MFs appeared more rapidly in the post-tissue processing, while SFs showed an elevated cellular metabolism and a well-defined cellular orientation. The four markers were mostly similar between the MFs and SFs, except for nestin, more expressed in MFs. Transcriptome analysis reveals significant differences, particularly in cyclic adenosine monophosphate (cAMP) metabolism and response to forskolin, both of which are upregulated in MFs. This study highlights MFs' unique characteristics, including the timing of appearance, metabolic activity, and gene expression patterns, particularly in cAMP metabolism and response to forskolin. These findings contribute to a deeper understanding of non-neuronal cells' involvement in CNS activities and potentially open avenues for therapeutic exploration.

13.
Cells ; 13(2)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247873

RESUMEN

Traumatic spinal cord injuries (SCIs) often result in sensory, motor, and vegetative function loss below the injury site. Although preclinical results have been promising, significant solutions for SCI patients have not been achieved through translating repair strategies to clinical trials. In this study, we investigated the effective potential of mechanically activated lipoaspirated adipose tissue when transplanted into the epicenter of a thoracic spinal contusion. Male Sprague Dawley rats were divided into three experimental groups: SHAM (uninjured and untreated), NaCl (spinal cord contusion with NaCl application), and AF (spinal cord contusion with transplanted activated human fat). Pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) were measured to assess endogenous inflammation levels 14 days after injury. Sensorimotor recovery was monitored weekly for 12 weeks, and gait and electrophysiological analyses were performed at the end of this observational period. The results indicated that AF reduced endogenous inflammation post-SCI and there was a significant improvement in sensorimotor recovery. Moreover, activated adipose tissue also reinstated the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions. This investigation highlights the efficacy of activated adipose tissue grafting in acute SCI, suggesting it is a promising therapeutic approach for spinal cord repair after traumatic contusion in humans.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Humanos , Ratas , Masculino , Animales , Cloruro de Sodio , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia , Tejido Adiposo , Contusiones/terapia , Inflamación
14.
J Clin Endocrinol Metab ; 109(2): e495-e507, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37820735

RESUMEN

CONTEXT: In 2005, a nationwide program of iodine prophylaxis on a voluntary basis was implemented in Italy by law. However, recent data on iodine status are lacking. OBJECTIVE: The aim of this study was to evaluate efficiency, effectiveness, and possible adverse effects (increased occurrence of thyroid autoimmunity and hyperthyroidism) of the Italian iodine prophylaxis program. METHODS: From 2015 to 2019, a nationwide survey was performed. The use of iodized salt was evaluated in a sample of 164 593 adults and in 998 school canteens. A sample of 4233 schoolchildren (aged 11-13 years) was recruited to assess urinary iodine concentration, prevalence of goiter, and thyroid hypoechogenicity on ultrasound, with the latter being an indirect indicator of thyroid autoimmunity. Neonatal TSH values of 197 677 infants screened in regions representative of Northern, Central, and Southern Italy were analyzed to investigate the percentage of TSH values >5.0 mIU/L. Data on methimazole prescriptions were analyzed as indirect indicators of new cases of hyperthyroidism. RESULTS: The prevalence of the use of iodized salt was 71.5% in adult population and 78% in school canteens. A median urinary iodine concentration of 124 µg/L, a prevalence of goiter of 2.2%, and a prevalence of thyroid hypoechogenicity of 5.7% were observed in schoolchildren. The percentage of neonatal TSH values >5.0 mIU/L resulted still higher (5.1%) than the World Health Organization threshold of 3.0%, whereas the prescriptions of methimazole showed a reduction of 13.5%. CONCLUSION: Fifteen years of iodine prophylaxis have led to iodine sufficiency in Italy, although there still is concern about iodine nutritional status during pregnancy.


Asunto(s)
Bocio , Hipertiroidismo , Yodo , Adulto , Femenino , Lactante , Embarazo , Recién Nacido , Humanos , Niño , Metimazol , Bocio/epidemiología , Bocio/prevención & control , Cloruro de Sodio Dietético , Italia/epidemiología , Prevalencia , Tirotropina
15.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004481

RESUMEN

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, and their roles in pediatric neurological diseases are increasingly being explored. This review provides an overview of lncRNA implications in the central nervous system, both in its physiological state and when a pathological condition is present. We describe the role of lncRNAs in neural development, highlighting their significance in processes such as neural stem cell proliferation, differentiation, and synaptogenesis. Dysregulation of specific lncRNAs is associated with multiple pediatric neurological diseases, such as neurodevelopmental or neurodegenerative disorders and brain tumors. The collected evidence indicates that there is a need for further research to uncover the full spectrum of lncRNA involvement in pediatric neurological diseases and brain tumors. While challenges exist, ongoing advancements in technology and our understanding of lncRNA biology offer hope for future breakthroughs in the field of pediatric neurology, leveraging lncRNAs as potential therapeutic targets and biomarkers.

16.
APL Bioeng ; 7(3): 036112, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37692376

RESUMEN

Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.

17.
Regen Eng Transl Med ; : 1-12, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37363698

RESUMEN

Purpose: Mesenchymal stem cells (MSCs) represent a promising source for stem cell therapies in numerous diseases, including pediatric respiratory system diseases. Characterized by low immunogenicity, high anti-inflammatory, and immunoregulatory features, MSCs demonstrated an excellent therapeutic profile in numerous in vitro and preclinical models. MSCs reside in a specialized physiologic microenvironment, characterized by a unique combination of biophysical, biochemical, and cellular properties. The exploitation of the 3D micro-scaffold Nichoid, which simulates the native niche, enhanced the anti-inflammatory potential of stem cells through mechanical stimulation only, overcoming the limitation of biochemical and xenogenic growth factors application. Materials and Methods: In this work, we expanded pediatric bone marrow MSCs (BM-MSCs) inside the Nichoid and performed a complete cellular characterization with different approaches including viability assays, immunofluorescence analyses, RNA sequencing, and gene expression analysis. Results: We demonstrated that BM-MSCs inside the scaffold remain in a stem cell quiescent state mimicking the condition of the in vivo environment. Moreover, the gene expression profile of these cells shows a significant up-regulation of genes involved in immune response when compared with the flat control. Conclusion: The significant changes in the expression profile of anti-inflammatory genes could potentiate the therapeutic effect of BM-MSCs, encouraging the possible clinical translation for the treatment of pediatric congenital and acquired pulmonary disorders, including post-COVID lung manifestations. Lay Summary: Regenerative medicine is the research field integrating medicine, biology, and biomedical engineering. In this context, stem cells, which are a fundamental cell source able to regenerate tissues and restore damage in the body, are the key component for a regenerative therapeutic approach. When expanded outside the body, stem cells tend to differentiate spontaneously and lose regenerative potential due to external stimuli. For this reason, we exploit the scaffold named Nichoid, which mimics the in vivo cell niche architecture. In this scaffold, mesenchymal stem cells "feel at home" due to the three-dimensional mechanical stimuli, and our findings could be considered as an innovative culture system for the in vitro expansion of stem cells for clinical translation. Future Perspective: The increasing demand of safe and effective cell therapies projects our findings toward the possibility of improving cell therapies based on the use of BM-MSCs, particularly for their clinical translation in lung diseases.

18.
Cells ; 12(8)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190014

RESUMEN

The prevalence of pediatric obesity is rising rapidly worldwide, and "omic" approaches are helpful in investigating the molecular pathophysiology of obesity. This work aims to identify transcriptional differences in the subcutaneous adipose tissue (scAT) of children with overweight (OW), obesity (OB), or severe obesity (SV) compared with those of normal weight (NW). Periumbilical scAT biopsies were collected from 20 male children aged 1-12 years. The children were stratified into the following four groups according to their BMI z-scores: SV, OB, OW, and NW. scAT RNA-Seq analyses were performed, and a differential expression analysis was conducted using the DESeq2 R package. A pathways analysis was performed to gain biological insights into gene expression. Our data highlight the significant deregulation in both coding and non-coding transcripts in the SV group when compared with the NW, OW, and OB groups. A KEGG pathway analysis showed that coding transcripts were mainly involved in lipid metabolism. A GSEA analysis revealed the upregulation of lipid degradation and metabolism in SV vs. OB and SV vs. OW. Bioenergetic processes and the catabolism of branched-chain amino acids were upregulated in SV compared with OB, OW, and NW. In conclusion, we report for the first time that a significant transcriptional deregulation occurs in the periumbilical scAT of children with severe obesity compared with those of normal weight or those with overweight or mild obesity.


Asunto(s)
Obesidad Mórbida , Obesidad Infantil , Humanos , Masculino , Niño , Obesidad Infantil/genética , Sobrepeso/genética , Proyectos Piloto , Transcriptoma/genética , Grasa Subcutánea
19.
Curr Issues Mol Biol ; 45(4): 2847-2860, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37185710

RESUMEN

Pompe disease (PD) is a monogenic autosomal recessive disorder caused by biallelic pathogenic variants of the GAA gene encoding lysosomal alpha-glucosidase; its loss causes glycogen storage in lysosomes, mainly in the muscular tissue. The genotype-phenotype correlation has been extensively discussed, and caution is recommended when interpreting the clinical significance of any mutation in a single patient. As there is no evidence that environmental factors can modulate the phenotype, the observed clinical variability in PD suggests that genetic variants other than pathogenic GAA mutations influence the mechanisms of muscle damage/repair and the overall clinical picture. Genes encoding proteins involved in glycogen synthesis and catabolism may represent excellent candidates as phenotypic modifiers of PD. The genes analyzed for glycogen synthesis included UGP2, glycogenin (GYG1-muscle, GYG2, and other tissues), glycogen synthase (GYS1-muscle and GYS2-liver), GBE1, EPM2A, NHLRC1, GSK3A, and GSK3B. The only enzyme involved in glycogen catabolism in lysosomes is α-glucosidase, which is encoded by GAA, while two cytoplasmic enzymes, phosphorylase (PYGB-brain, PGL-liver, and PYGM-muscle) and glycogen debranching (AGL) are needed to obtain glucose 1-phosphate or free glucose. Here, we report the potentially relevant variants in genes related to glycogen synthesis and catabolism, identified by whole exome sequencing in a group of 30 patients with late-onset Pompe disease (LOPD). In our exploratory analysis, we observed a reduced number of variants in the genes expressed in muscles versus the genes expressed in other tissues, but we did not find a single variant that strongly affected the phenotype. From our work, it also appears that the current clinical scores used in LOPD do not describe muscle impairment with enough qualitative/quantitative details to correlate it with genes that, even with a slightly reduced function due to genetic variants, impact the phenotype.

20.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37107340

RESUMEN

Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...