Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1548, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378784

RESUMEN

Mitochondrial cytochrome c maturation (CCM) requires heme attachment via distinct pathways termed systems I and III. The mosaic distribution of these systems in Archaeplastida raises questions about the genetic mechanisms and evolutionary forces promoting repeated evolution. Here, we show a recurrent shift from ancestral system I to the eukaryotic-specific holocytochrome c synthase (HCCS) of system III in 11 archaeplastid lineages. Archaeplastid HCCS is sufficient to rescue mutants of yeast system III and Arabidopsis system I. Algal HCCS mutants exhibit impaired growth and respiration, and altered biochemical and metabolic profiles, likely resulting from deficient CCM and reduced cytochrome c-dependent respiratory activity. Our findings demonstrate that archaeplastid HCCS homologs function as system III components in the absence of system I. These results elucidate the evolutionary trajectory and functional divergence of CCM pathways in Archaeplastida, providing insight into the causes, mechanisms, and consequences of repeated cooption of an entire biological pathway.


Asunto(s)
Citocromos c , Mitocondrias , Secuencia de Aminoácidos , Citocromos c/genética , Citocromos c/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
2.
Plant Cell ; 35(6): 1868-1887, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36945744

RESUMEN

Small RNAs (sRNAs) associate with ARGONAUTE (AGO) proteins forming effector complexes with key roles in gene regulation and defense responses against molecular parasites. In multicellular eukaryotes, extensive duplication and diversification of RNA interference (RNAi) components have resulted in intricate pathways for epigenetic control of gene expression. The unicellular alga Chlamydomonas reinhardtii also has a complex RNAi machinery, including 3 AGOs and 3 DICER-like proteins. However, little is known about the biogenesis and function of most endogenous sRNAs. We demonstrate here that Chlamydomonas contains uncommonly long (>26 nt) sRNAs that associate preferentially with AGO1. Somewhat reminiscent of animal PIWI-interacting RNAs, these >26 nt sRNAs are derived from moderately repetitive genomic clusters and their biogenesis is DICER-independent. Interestingly, the sequences generating these >26-nt sRNAs have been conserved and amplified in several Chlamydomonas species. Moreover, expression of these longer sRNAs increases substantially under nitrogen or sulfur deprivation, concurrently with the downregulation of predicted target transcripts. We hypothesize that the transposon-like sequences from which >26-nt sRNAs are produced might have been ancestrally targeted for silencing by the RNAi machinery but, during evolution, certain sRNAs might have fortuitously acquired endogenous target genes and become integrated into gene regulatory networks.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Animales , Chlamydomonas/genética , Chlamydomonas/metabolismo , Interferencia de ARN , Regulación de la Expresión Génica , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
3.
Plant Physiol ; 187(4): 2637-2655, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618092

RESUMEN

Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of interest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)-in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the generated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial ftsY or the WD and TetratriCopeptide repeats protein 1 genes in ∼1% of the oxyfluorfen resistant colonies. Analysis of the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways, or structures.


Asunto(s)
Proteínas Algáceas/genética , Sistemas CRISPR-Cas , Chlamydomonas/genética , Edición Génica/métodos , Ribonucleoproteínas/genética
4.
Plant J ; 105(5): 1400-1412, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33280202

RESUMEN

Casein kinase I (CK1), a ubiquitous Ser/Thr protein kinase in eukaryotes, plays a critical role in higher plant flowering. Arabidopsis CK1 family member MUT9-LIKE KINASEs, such as MLK1 and MLK3, have been shown to phosphorylate histone H3 at threonine 3 (H3T3), an evolutionarily conserved residue, and the modification is associated with the transcriptional repression of euchromatic and heterochromatic loci. This study demonstrates that mlk4-3, a T-DNA insertion mutant of MLK4, flowered late, and that overexpression of MLK4 caused early flowering. The nuclear protein MLK4 phosphorylated histone H3T3 both in vitro and in vivo, and this catalytic activity required the conserved lysine residue K175. mutation of MLK4 at K175 failed to restore the level of phosphorylated H3T3 (H3T3ph) or to complement the phenotypic defects of mlk4-3. The FLC/MAF-clade genes, including FLC, MAF4 and MAF5, were significantly upregulated in mlk4-3. The double mutant mlk4-3 flc-3 flowered earlier than mlk4-3, suggesting that functional FLC is crucial for flowering repression in mlk4-3. Chromatin immunoprecipitation assays showed that MLK4 bound to FLC/MAF chromatin and that H3T3ph occupancy at the promoter of FLC/MAF was negatively associated with its transcriptional level. In accordance, H3T3ph accumulated at FLC/MAF in 35S::MLK4/mlk4-3 but diminished in 35S::MLK4(K175R)/mlk4-3 plants. Moreover, the amount of RNA Pol II deposited at FLC/MAF was clearly enriched in mlk4-3 relative to the wild type. Therefore, MLK4-dependent phosphorylation of H3T3 contributes to accelerating flowering by repressing the transcription of negative flowering regulator FLC/MAF. This study sheds light on the delicate control of flowering by the plant-specific CK1, MLK4, via post-translational modification of histone H3.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Inmunoprecipitación de Cromatina , ADN Bacteriano/genética , Fosforilación/genética , Fosforilación/fisiología
6.
Nat Methods ; 17(5): 481-494, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251396

RESUMEN

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Asunto(s)
ADN/administración & dosificación , Eucariontes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Biología Marina , Modelos Biológicos , Transformación Genética , Biodiversidad , Ecosistema , Ambiente , Eucariontes/clasificación , Especificidad de la Especie
7.
Proc Natl Acad Sci U S A ; 117(1): 761-770, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871206

RESUMEN

Small RNAs (sRNAs) associate with Argonaute (AGO) proteins in effector complexes, termed RNA-induced silencing complexes (RISCs), which regulate complementary transcripts by translation inhibition and/or RNA degradation. In the unicellular alga Chlamydomonas, several metazoans, and land plants, emerging evidence indicates that polyribosome-associated transcripts can be translationally repressed by RISCs without substantial messenger RNA (mRNA) destabilization. However, the mechanism of translation inhibition in a polyribosomal context is not understood. Here we show that Chlamydomonas VIG1, an ortholog of the Drosophila melanogaster Vasa intronic gene (VIG), is required for this process. VIG1 localizes predominantly in the cytosol and comigrates with monoribosomes and polyribosomes by sucrose density gradient sedimentation. A VIG1-deleted mutant shows hypersensitivity to the translation elongation inhibitor cycloheximide, suggesting that VIG1 may have a nonessential role in ribosome function/structure. Additionally, FLAG-tagged VIG1 copurifies with AGO3 and Dicer-like 3 (DCL3), consistent with it also being a component of the RISC. Indeed, VIG1 is necessary for the repression of sRNA-targeted transcripts at the translational level but is dispensable for cleavage-mediated RNA interference and for the association of the AGO3 effector with polyribosomes or target transcripts. Our results suggest that VIG1 is an ancillary ribosomal component and plays a role in sRNA-mediated translation repression of polyribosomal transcripts.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas Argonautas/metabolismo , Cicloheximida/farmacología , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polirribosomas/genética , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(7): 1652-1657, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382746

RESUMEN

Understanding the unique features of triacylglycerol (TAG) metabolism in microalgae may be necessary to realize the full potential of these organisms for biofuel and biomaterial production. In the unicellular green alga Chlamydomonas reinhardtii a chloroplastic (prokaryotic) pathway has been proposed to play a major role in TAG precursor biosynthesis. However, as reported here, C. reinhardtii contains a chlorophyte-specific lysophosphatidic acid acyltransferase, CrLPAAT2, that localizes to endoplasmic reticulum (ER) membranes. Unlike canonical, ER-located LPAATs, CrLPAAT2 prefers palmitoyl-CoA over oleoyl-CoA as the acyl donor substrate. RNA-mediated suppression of CrLPAAT2 indicated that the enzyme is required for TAG accumulation under nitrogen deprivation. Our findings suggest that Chlamydomonas has a distinct glycerolipid assembly pathway that relies on CrLPAAT2 to generate prokaryotic-like TAG precursors in the ER.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Retículo Endoplásmico/metabolismo , Triglicéridos/metabolismo , Chlamydomonas reinhardtii/crecimiento & desarrollo , Filogenia , Especificidad por Sustrato
9.
Sci Rep ; 7(1): 5462, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710366

RESUMEN

The unicellular alga Chlamydomonas reinhardtii contains many types of small RNAs (sRNAs) but the biological role(s) of bona fide microRNAs (miRNAs) remains unclear. To address their possible function(s) in responses to nutrient availability, we examined miRNA expression in cells cultured under different trophic conditions (mixotrophic in the presence of acetate or photoautotrophic in the presence or absence of nitrogen). We also reanalyzed miRNA expression data in Chlamydomonas subject to sulfur or phosphate deprivation. Several miRNAs were differentially expressed under the various trophic conditions. However, in transcriptome analyses, the majority of their predicted targets did not show expected changes in transcript abundance, suggesting that they are not subject to miRNA-mediated RNA degradation. Mutant strains, defective in sRNAs or in ARGONAUTE3 (a key component of sRNA-mediated gene silencing), did not display major phenotypic defects when grown under multiple nutritional regimes. Additionally, Chlamydomonas miRNAs were not conserved, even in algae of the closely related Volvocaceae family, and many showed features resembling those of recently evolved, species-specific miRNAs in the genus Arabidopsis. Our results suggest that, in C. reinhardtii, miRNAs might be subject to relatively fast evolution and have only a minor, largely modulatory role in gene regulation under diverse trophic states.


Asunto(s)
Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Fosfatos/deficiencia , ARN de Algas/genética , Azufre/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Evolución Biológica , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , MicroARNs/metabolismo , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fosfatos/farmacología , Filogenia , ARN de Algas/metabolismo , Azufre/farmacología
10.
Commun Integr Biol ; 10(1): e1280208, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28289490

RESUMEN

We have previously reported that the RNA-binding protein Dull slicer 16 (DUS16) plays a key role in the processing of primary miRNAs (pri-miRNAs) in the unicellular green alga Chlamydomonas reinhardtii. In the present report, we elaborate on the interaction of DUS16 with Dicer-like 3 (DCL3) during pri-miRNA processing. Comprehensive analyses of small RNA libraries derived from mutant and wild-type algal strains allowed the de novo prediction of 35 pri-miRNA genes, including 9 previously unknown ones. The pri-miRNAs dependent on DUS16 for processing largely overlapped with those dependent on DCL3. Our findings suggest that DUS16 and DCL3 work cooperatively, presumably as components of a microprocessor complex, in the processing of the majority of pri-miRNAs in C. reinhardtii.

11.
Plant J ; 90(6): 1079-1092, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28273364

RESUMEN

Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Glicerolfosfato Deshidrogenasa/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Plantas/genética
12.
Proc Natl Acad Sci U S A ; 113(38): 10720-5, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27582463

RESUMEN

Canonical microRNAs (miRNAs) are embedded in duplexed stem-loops in long precursor transcripts and are excised by sequential cleavage by DICER nuclease(s). In this miRNA biogenesis pathway, dsRNA-binding proteins play important roles in animals and plants by assisting DICER. However, these RNA-binding proteins are poorly characterized in unicellular organisms. Here we report that a unique RNA-binding protein, Dull slicer-16 (DUS16), plays an essential role in processing of primary-miRNA (pri-miRNA) transcripts in the unicellular green alga Chlamydomonas reinhardtii In animals and plants, dsRNA-binding proteins involved in miRNA biogenesis harbor two or three dsRNA-binding domains (dsRBDs), whereas DUS16 contains one dsRBD and also an ssRNA-binding domain (RRM). The null mutant of DUS16 showed a drastic reduction in most miRNA species. Production of these miRNAs was complemented by expression of full-length DUS16, but the expression of RRM- or dsRBD-truncated DUS16 did not restore miRNA production. Furthermore, DUS16 is predominantly localized to the nucleus and associated with nascent (unspliced form) pri-miRNAs and the DICER-LIKE 3 protein. These results suggest that DUS16 recognizes pri-miRNA transcripts cotranscriptionally and promotes their processing into mature miRNAs as a component of a microprocessor complex. We propose that DUS16 is an essential factor for miRNA production in Chlamydomonas and, because DUS16 is functionally similar to the dsRNA-binding proteins involved in miRNA biogenesis in animals and land plants, our report provides insight into this mechanism in unicellular eukaryotes.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas de Arabidopsis/genética , ADN de Cadena Simple/genética , MicroARNs/biosíntesis , Procesamiento Postranscripcional del ARN/genética , Ribonucleasa III/genética
13.
Plant J ; 85(2): 258-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26686836

RESUMEN

MicroRNAs (miRNAs) play important roles in diverse biological processes in eukaryotes, generally through degradation and/or inhibition of the translation of target mRNAs. MicroRNAs are loaded into Argonaute (AGO) proteins to form the RNA-induced silencing complex (RISC) and used as guides to identify complementary transcripts. The distinct functions and features, such as associated small RNA classes and modes of silencing, of individual AGO paralogs have been well documented in multicellular eukaryotes. However, this aspect of miRNA function remains poorly understood in the unicellular green alga Chlamydomonas reinhardtii, which contains three AGO paralogs. In this study, we isolated AGO2 and AGO3 insertional mutants and confirmed that AGO3 is more abundantly expressed than AGO2. MicroRNA-directed target transcript cleavage and translational repression were impaired in the AGO3 mutant background, indicating that AGO3 can mediate both modes of silencing. In contrast, although the AGO2 mutant is not a null, the involvement of AGO2 in miRNA-directed silencing appears to be more limited. Our results strongly suggest that miRNA-mediated post-transcriptional gene silencing relies primarily on AGO3 in Chlamydomonas.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Chlamydomonas/genética , Regulación de la Expresión Génica/genética , MicroARNs/genética , Mutagénesis/genética , Mutagénesis/fisiología
14.
Proc Natl Acad Sci U S A ; 112(27): 8487-92, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100864

RESUMEN

Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5' genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Centrómero/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Treonina/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromosomas de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Heterocromatina/metabolismo , Immunoblotting , Lisina/metabolismo , Metilación , Mutación , Presión Osmótica , Fosforilación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cloruro de Sodio/farmacología
15.
Genetics ; 200(1): 105-21, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25769981

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii harbors many types of small RNAs (sRNAs) but little is known about their role(s) in the regulation of endogenous genes and cellular processes. To define functional microRNAs (miRNAs) in Chlamydomonas, we characterized sRNAs associated with an argonaute protein, AGO3, by affinity purification and deep sequencing. Using a stringent set of criteria for canonical miRNA annotation, we identified 39 precursor miRNAs, which produce 45 unique, AGO3-associated miRNA sequences including 13 previously reported miRNAs and 32 novel ones. Potential miRNA targets were identified based on the complementarity of miRNAs with candidate binding sites on transcripts and classified, depending on the extent of complementarity, as being likely to be regulated through cleavage or translational repression. The search for cleavage targets identified 74 transcripts. However, only 6 of them showed an increase in messenger RNA (mRNA) levels in a mutant strain almost devoid of sRNAs. The search for translational repression targets, which used complementarity criteria more stringent than those empirically required for a reduction in target protein levels, identified 488 transcripts. However, unlike observations in metazoans, most predicted translation repression targets did not show appreciable changes in transcript abundance in the absence of sRNAs. Additionally, of three candidate targets examined at the protein level, only one showed a moderate variation in polypeptide amount in the mutant strain. Our results emphasize the difficulty in identifying genuine miRNA targets in Chlamydomonas and suggest that miRNAs, under standard laboratory conditions, might have mainly a modulatory role in endogenous gene regulation in this alga.


Asunto(s)
Proteínas Argonautas/genética , Chlamydomonas reinhardtii/genética , MicroARNs/genética , Modelos Genéticos , Proteínas de Plantas/genética , Proteínas Argonautas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Motivos de Nucleótidos , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN/métodos
16.
Plant Physiol ; 167(3): 753-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25614063

RESUMEN

Posttranslational modification of proteins by small ubiquitin-like modifier (SUMO) is required for survival of virtually all eukaryotic organisms. Attachment of SUMO to target proteins is catalyzed by SUMO E2 conjugase. All haploid or diploid eukaryotes studied to date possess a single indispensable SUMO conjugase. We report here the unanticipated isolation of a Chlamydomonas reinhardtii (mutant5 [mut5]). in which the previously identified SUMO conjugase gene C. reinhardtii ubiquitin-conjugating enzyme9 (CrUBC9) is deleted. This surprising mutant is viable and unexpectedly, displays a pattern of protein SUMOylation at 25°C that is essentially identical to wild-type cells. However, unlike wild-type cells, mut5 fails to SUMOylate a large set of proteins in response to multiple stress conditions, a failure that results in a markedly reduced tolerance or complete lack of tolerance to these stresses. Restoration of expected stress-induced protein SUMOylation patterns as well as normal stress tolerance phenotypes in mut5 cells complemented with a CrUBC9 gene shows that CrUBC9 is an authentic SUMO conjugase and, more importantly, that SUMOylation is essential for cell survival under stress conditions. The presence of bona fide SUMOylated proteins in the mut5 mutant at 25°C can only be explained by the presence of at least one additional SUMO conjugase in C. reinhardtii, a conjugase tentatively identified as CrUBC3. Together, these results suggest that, unlike all other nonpolyploid eukaryotes, there are at least two distinct and functional SUMO E2 conjugases in C. reinhardtii, with a clear division of labor between the two sets: One (CrUBC9) is involved in essential stress-induced SUMOylations, and one (CrUBC3) is involved in housekeeping SUMOylations.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Estrés Fisiológico , Sumoilación , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crecimiento & desarrollo , Eliminación de Gen , Prueba de Complementación Genética , Fenotipo , Filogenia , Transporte de Proteínas
17.
Bioresour Technol ; 184: 23-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25466994

RESUMEN

Microalgae exhibit enormous diversity and can potentially contribute to the production of biofuels and high value compounds. However, for most species, our knowledge of their physiology, metabolism, and gene regulation is fairly limited. In eukaryotes, gene silencing mechanisms play important roles in both the reversible repression of genes that are required only in certain contexts and the suppression of genome invaders such at transposons. The recent sequencing of several algal genomes is providing insights into the complexity of these mechanisms in microalgae. Collectively, glaucophyte, red, and green microalgae contain the machineries involved in repressive histone H3 lysine methylation, DNA cytosine methylation, and RNA interference. However, individual species often only have subsets of these gene silencing mechanisms. Moreover, current evidence suggests that algal silencing systems function in transposon and transgene repression but their role(s) in gene regulation or other cellular processes remains virtually unexplored, hindering rational genetic engineering efforts.


Asunto(s)
Silenciador del Gen , Microalgas/genética , Materiales Biocompatibles/síntesis química , Biocombustibles/microbiología , Histonas/metabolismo , Metiltransferasas/metabolismo , Microalgas/enzimología
18.
Plant J ; 76(6): 1045-56, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24127635

RESUMEN

MicroRNAs (miRNAs) are 20-24 nt non-coding RNAs that play important regulatory roles in a broad range of eukaryotes by pairing with mRNAs to direct post-transcriptional repression. The mechanistic details of miRNA-mediated post-transcriptional regulation have been well documented in multicellular model organisms. However, this process remains poorly studied in algae such as Chlamydomonas reinhardtii, and specific features of miRNA biogenesis, target mRNA recognition and subsequent silencing are not well understood. In this study, we report on the characterization of a Chlamydomonas miRNA, cre-miR1174.2, which is processed from a near-perfect hairpin RNA. Using Gaussia luciferase (gluc) reporter genes, we have demonstrated that cre-miR1174.2 is functional in Chlamydomonas and capable of triggering site-specific cleavage at the center of a perfectly complementary target sequence. A mismatch tolerance test assay, based on pools of transgenic strains, revealed that target hybridization to nucleotides of the seed region, at the 5' end of an miRNA, was sufficient to induce moderate repression of expression. In contrast, pairing to the 3' region of the miRNA was not critical for silencing. Our results suggest that the base-pairing requirements for small RNA-mediated repression in C. reinhardtii are more similar to those of metazoans compared with the extensive complementarity that is typical of land plants. Individual Chlamydomonas miRNAs may potentially modulate the expression of numerous endogenous targets as a result of these relaxed base-pairing requirements.


Asunto(s)
Emparejamiento Base/genética , Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Disparidad de Par Base , Secuencia de Bases , Expresión Génica , Genes Reporteros , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Mensajero/genética , ARN de Planta/genética , Análisis de Secuencia de ADN
19.
Plant Cell ; 25(3): 985-98, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23512853

RESUMEN

Small RNAs (sRNAs; ∼20 to 30 nucleotides in length) play important roles in gene regulation as well as in defense responses against transposons and viruses in eukaryotes. Their biogenesis and modes of action have attracted great attention in recent years. However, many aspects of sRNA function, such as the mechanism(s) of translation repression at postinitiation steps, remain poorly characterized. In the unicellular green alga Chlamydomonas reinhardtii, sRNAs derived from genome-integrated inverted repeat transgenes, perfectly complementary to the 3' untranslated region of a target transcript, can inhibit protein synthesis without or with only minimal mRNA destabilization. Here, we report that the sRNA-repressed transcripts are not altered in their polyadenylation status and they remain associated with polyribosomes, indicating inhibition at a postinitiation step of translation. Interestingly, ribosomes associated with sRNA-repressed transcripts show reduced sensitivity to translation inhibition by some antibiotics, such as cycloheximide, both in ribosome run-off assays and in in vivo experiments. Our results suggest that sRNA-mediated repression of protein synthesis in C. reinhardtii may involve alterations to the function/structural conformation of translating ribosomes. Additionally, sRNA-mediated translation inhibition is now known to occur in a number of phylogenetically diverse eukaryotes, suggesting that this mechanism may have been a feature of an ancestral RNA interference machinery.


Asunto(s)
Chlamydomonas reinhardtii/efectos de los fármacos , Cicloheximida/farmacología , Polirribosomas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Chlamydomonas reinhardtii/clasificación , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Medios de Cultivo/metabolismo , Genes de Plantas , Higromicina B/farmacología , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Filogenia , Polirribosomas/genética , Polirribosomas/metabolismo , Estabilidad del ARN , ARN de Planta/genética , ARN Interferente Pequeño/genética , Relación Estructura-Actividad
20.
Phytochemistry ; 75: 50-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22226037

RESUMEN

Microalgae are emerging as suitable feedstocks for renewable biofuel production. Characterizing the metabolic pathways involved in the biosynthesis of energy-rich compounds, such as lipids and carbohydrates, and the environmental factors influencing their accumulation is necessary to realize the full potential of these organisms as energy resources. The model green alga Chlamydomonas reinhardtii accumulates significant amounts of triacylglycerols (TAGs) under nitrogen starvation or salt stress in medium containing acetate. However, since cultivation of microalgae for biofuel production may need to rely on sunlight as the main source of energy for biomass synthesis, metabolic and gene expression changes occurring in Chlamydomonas and Coccomyxa subjected to nitrogen deprivation were examined under strictly photoautotrophic conditions. Interestingly, nutrient depletion triggered a similar pattern of early synthesis of starch followed by substantial TAG accumulation in both of these fairly divergent green microalgae. A marked decrease in chlorophyll and protein contents was also observed, including reduction in ribosomal polypeptides and some key enzymes for CO2 assimilation like ribulose-1,5-bisphosphate carboxylase/oxygenase. These results suggest that turnover of nitrogen-rich compounds such as proteins may provide carbon/energy for TAG biosynthesis in the nutrient deprived cells. In Chlamydomonas, several genes coding for diacylglycerol:acyl-CoA acyltransferases, catalyzing the acylation of diacylglycerol to TAG, displayed increased transcript abundance under nitrogen depletion but, counterintuitively, genes encoding enzymes for de novo fatty acid synthesis, such as 3-ketoacyl-ACP synthase I, were down-regulated. Understanding the interdependence of these anabolic and catabolic processes and their regulation may allow the engineering of algal strains with improved capacity to convert their biomass into useful biofuel precursors.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlorophyta/genética , Chlorophyta/metabolismo , Regulación de la Expresión Génica/genética , Nitrógeno/metabolismo , Biomasa , Chlamydomonas reinhardtii/crecimiento & desarrollo , Clorofila/metabolismo , Chlorophyta/crecimiento & desarrollo , Lípidos/biosíntesis , Lípidos/genética , Fotosíntesis , Proteínas/genética , Proteínas/metabolismo , Almidón/biosíntesis , Almidón/metabolismo , Triglicéridos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA