Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 18(11): e9933, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36377768

RESUMEN

The gut microbiome is essential for processing complex food compounds and synthesizing nutrients that the host cannot digest or produce, respectively. New model systems are needed to study how the metabolic capacity provided by the gut microbiome impacts the nutritional status of the host, and to explore possibilities for altering host metabolic capacity via the microbiome. Here, we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C. elegans to utilize cellulose, an otherwise indigestible substrate, as a carbon source. Cellulolytic bacteria as a community component in the worm gut can also support additional bacterial species with specialized roles, which we demonstrate by using Lactobacillus plantarum to protect C. elegans against Salmonella enterica infection. This work shows that engineered microbiome communities can be used to endow host organisms with novel functions, such as the ability to utilize alternate nutrient sources or to better fight pathogenic bacteria.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Caenorhabditis elegans/microbiología , Bacterias
2.
Nat Commun ; 12(1): 2321, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875652

RESUMEN

Bactericidal antibiotics kill bacteria by perturbing various cellular targets and processes. Disruption of the primary antibiotic-binding partner induces a cascade of molecular events, leading to overproduction of reactive metabolic by-products. It remains unclear, however, how these molecular events contribute to bacterial cell death. Here, we take a single-cell physical biology approach to probe antibiotic function. We show that aminoglycosides and fluoroquinolones induce cytoplasmic condensation through membrane damage and subsequent outflow of cytoplasmic contents as part of their lethality. A quantitative model of membrane damage and cytoplasmic leakage indicates that a small number of nanometer-scale membrane defects in a single bacterium can give rise to the cellular-scale phenotype of cytoplasmic condensation. Furthermore, cytoplasmic condensation is associated with the accumulation of reactive metabolic by-products and lipid peroxidation, and pretreatment of cells with the antioxidant glutathione attenuates cytoplasmic condensation and cell death. Our work expands our understanding of the downstream molecular events that are associated with antibiotic lethality, revealing cytoplasmic condensation as a phenotypic feature of antibiotic-induced bacterial cell death.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Aminoglicósidos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citoplasma/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Viabilidad Microbiana/efectos de los fármacos , Microscopía de Fuerza Atómica/métodos , Microscopía Fluorescente/métodos , Análisis de la Célula Individual/métodos
3.
Nat Chem Biol ; 14(3): 256-261, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29309053

RESUMEN

Indigo is an ancient dye uniquely capable of producing the signature tones in blue denim; however, the dyeing process requires chemical steps that are environmentally damaging. We describe a sustainable dyeing strategy that not only circumvents the use of toxic reagents for indigo chemical synthesis but also removes the need for a reducing agent for dye solubilization. This strategy utilizes a glucose moiety as a biochemical protecting group to stabilize the reactive indigo precursor indoxyl to form indican, preventing spontaneous oxidation to crystalline indigo during microbial fermentation. Application of a ß-glucosidase removes the protecting group from indican, resulting in indigo crystal formation in the cotton fibers. We identified the gene coding for the glucosyltransferase PtUGT1 from the indigo plant Polygonum tinctorium and solved the structure of PtUGT1. Heterologous expression of PtUGT1 in Escherichia coli supported high indican conversion, and biosynthesized indican was used to dye cotton swatches and a garment.


Asunto(s)
Color , Glucósidos/química , Glucosiltransferasas/química , Carmin de Índigo/química , Polygonum/enzimología , beta-Glucosidasa/química , Reactores Biológicos , Dominio Catalítico , Cristalografía por Rayos X , ADN Complementario/metabolismo , Dimerización , Escherichia coli , Fermentación , Perfilación de la Expresión Génica , Biblioteca de Genes , Indoles/química , Hojas de la Planta/enzimología , Proteínas de Plantas/química , Polygonum/genética , Proteínas Recombinantes/química , Textiles , Transcriptoma
4.
ACS Synth Biol ; 4(9): 975-86, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25871405

RESUMEN

Saccharomyces cerevisiae is an increasingly attractive host for synthetic biology because of its long history in industrial fermentations. However, until recently, most synthetic biology systems have focused on bacteria. While there is a wealth of resources and literature about the biology of yeast, it can be daunting to navigate and extract the tools needed for engineering applications. Here we present a versatile engineering platform for yeast, which contains both a rapid, modular assembly method and a basic set of characterized parts. This platform provides a framework in which to create new designs, as well as data on promoters, terminators, degradation tags, and copy number to inform those designs. Additionally, we describe genome-editing tools for making modifications directly to the yeast chromosomes, which we find preferable to plasmids due to reduced variability in expression. With this toolkit, we strive to simplify the process of engineering yeast by standardizing the physical manipulations and suggesting best practices that together will enable more straightforward translation of materials and data from one group to another. Additionally, by relieving researchers of the burden of technical details, they can focus on higher-level aspects of experimental design.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Ingeniería Genética/métodos , Saccharomyces cerevisiae/genética , Variaciones en el Número de Copia de ADN , ADN de Hongos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Familia de Multigenes , Plásmidos/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...