Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(47): 40814-23, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21931163

RESUMEN

α-Galactosides are non-digestible carbohydrates widely distributed in plants. They are a potential source of energy in our daily food, and their assimilation by microbiota may play a role in obesity. In the intestinal tract, they are degraded by microbial glycosidases, which are often modular enzymes with catalytic domains linked to carbohydrate-binding modules. Here we introduce a bifunctional enzyme from the human intestinal bacterium Ruminococcus gnavus E1, α-galactosidase/sucrose kinase (AgaSK). Sequence analysis showed that AgaSK is composed of two domains: one closely related to α-galactosidases from glycoside hydrolase family GH36 and the other containing a nucleotide-binding motif. Its biochemical characterization showed that AgaSK is able to hydrolyze melibiose and raffinose to galactose and either glucose or sucrose, respectively, and to specifically phosphorylate sucrose on the C6 position of glucose in the presence of ATP. The production of sucrose-6-P directly from raffinose points toward a glycolytic pathway in bacteria, not described so far. The crystal structures of the galactosidase domain in the apo form and in complex with the product shed light onto the reaction and substrate recognition mechanisms and highlight an oligomeric state necessary for efficient substrate binding and suggesting a cross-talk between the galactose and kinase domains.


Asunto(s)
Metagenoma , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ruminococcus/enzimología , Sacarosa/metabolismo , alfa-Galactosidasa/metabolismo , Anaerobiosis , Animales , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Intestinos/microbiología , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Rafinosa/metabolismo , Ratas , Especificidad por Sustrato , alfa-Galactosidasa/química
2.
Biochim Biophys Acta ; 1794(3): 438-45, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19118652

RESUMEN

Penicillium griseofulvum possesses two endo-(1,4)-beta-xylanase genes, PgXynA and PgXynB, belonging to family 11 glycoside hydrolases. The enzymes share 69% identity, a similar hydrolysis profile i.e. the predominant production of xylobiose and xylotriose as end products from wheat arabinoxylan and a specificity region of six potential xylose subsites, but differ in terms of catalytic efficiency which can be explained by subtle structural differences in the positioning of xylohexaose in the PgXynB model. Site-directed mutagenesis of the "thumb" region revealed structural basis of PgXynB substrate and inhibitor specificities. We produced variants displaying increased catalytic efficiency towards wheat arabinoxylan and xylo-oligosaccharides and identified specific determinants in PgXynB "thumb" region responsible for resistance to the wheat xylanase inhibitor XIP-I. Based on kinetic analysis and homology modeling, we suggested that Pro130(PgXynB), Lys131(PgXynB) and Lys132(PgXynB) hamper flexibility of the loop forming the "thumb" and interfere by steric hindrance with the inhibitor.


Asunto(s)
Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Penicillium/enzimología , Secuencia de Aminoácidos , Proteínas Portadoras/farmacología , Endo-1,4-beta Xilanasas/antagonistas & inhibidores , Endo-1,4-beta Xilanasas/química , Péptidos y Proteínas de Señalización Intracelular , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...