Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Adv Healthc Mater ; : e2401192, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837879

RESUMEN

Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is a subtype associated with poor survival outcomes. Despite identifying therapeutic targets through molecular characterization, targeted therapies have limited success. New strategies using immune-competent tissue models are needed to understand how DLBCL cells evade treatment. Here, synthetic hydrogel-based lymphoma organoids are used to demonstrate how signals in the lymphoid tumor microenvironment (Ly-TME) can alter B cell receptor (BCR) signaling and specific histone modifications, tri-methylation of histone 3 at lysine 9 (H3K9me3), dampening the effects of BCR pathway inhibition. Using imaging modalities, T cells increase DNA methyltransferase 3A expression and cytoskeleton formation in proximal ABC-DLBCL cells, regulated by H3K9me3. Expansion microscopy on lymphoma organoids reveals T cells increase the size and quantity of segregated H3K9me3 clusters in ABC-DLBCL cells. Findings suggest the re-organization of higher-order chromatin structures that may contribute to evasion or resistance to therapy via the emergence of novel transcriptional states. Treating ABC-DLBCL cells with a G9α histone methyltransferase inhibitor reverses T cell-mediated modulation of H3K9me3 and overcomes T cell-mediated attenuation of treatment response to BCR pathway inhibition. This study emphasizes the Ly-TME's role in altering DLBCL fate and suggests targeting aberrant signaling and microenvironmental cross-talk that can benefit high-risk patients.

2.
Sci Rep ; 14(1): 13782, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877073

RESUMEN

Kaposi's sarcoma (KS) is a cancer affecting skin and internal organs for which the Kaposi's sarcoma associated herpesvirus (KSHV) is a necessary cause. Previous work has pursued KS diagnosis by quantifying KSHV DNA in skin biopsies using a point-of-care (POC) device which performs quantitative loop-mediated isothermal amplification (LAMP). These previous studies revealed that extracting DNA from patient biopsies was the rate limiting step in an otherwise rapid process. In this study, a simplified, POC-compatible alkaline DNA extraction, ColdSHOT, was optimized for 0.75 mm human skin punch biopsies. The optimized ColdSHOT extraction consistently produced 40,000+ copies of DNA per 5 µl reaction from 3 mg samples-a yield comparable to standard spin column extractions-within 1 h without significant equipment. The DNA yield was estimated sufficient for KSHV detection from KS-positive patient biopsies, and the LAMP assay was not affected by non-target tissue in the unpurified samples. Furthermore, the yields achieved via ColdSHOT were robust to sample storage in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer prior to DNA extraction, and the DNA sample was stable after extraction. The results presented in this study indicate that the ColdSHOT DNA extraction could be implemented to simplify and accelerate the LAMP-based diagnosis of Kaposi's sarcoma using submillimeter biopsy samples.


Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Técnicas de Amplificación de Ácido Nucleico , Sarcoma de Kaposi , Piel , Humanos , ADN Viral/genética , ADN Viral/aislamiento & purificación , Herpesvirus Humano 8/aislamiento & purificación , Herpesvirus Humano 8/genética , Biopsia/métodos , Piel/virología , Piel/patología , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Sistemas de Atención de Punto , Técnicas de Diagnóstico Molecular/métodos
3.
J Med Virol ; 96(5): e29684, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773828

RESUMEN

Kaposi's sarcoma (KS) may derive from Kaposi's sarcoma herpesvirus (KSHV)-infected human mesenchymal stem cells (hMSCs) that migrate to sites characterized by inflammation and angiogenesis, promoting the initiation of KS. By analyzing the RNA sequences of KSHV-infected primary hMSCs, we have identified specific cell subpopulations, mechanisms, and conditions involved in the initial stages of KSHV-induced transformation and reprogramming of hMSCs into KS progenitor cells. Under proangiogenic environmental conditions, KSHV can reprogram hMSCs to exhibit gene expression profiles more similar to KS tumors, activating cell cycle progression, cytokine signaling pathways, endothelial differentiation, and upregulating KSHV oncogenes indicating the involvement of KSHV infection in inducing the mesenchymal-to-endothelial (MEndT) transition of hMSCs. This finding underscores the significance of this condition in facilitating KSHV-induced proliferation and reprogramming of hMSCs towards MEndT and closer to KS gene expression profiles, providing further evidence of these cell subpopulations as precursors of KS cells that thrive in a proangiogenic environment.


Asunto(s)
Herpesvirus Humano 8 , Células Madre Mesenquimatosas , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/virología , Células Madre Mesenquimatosas/virología , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Proliferación Celular
4.
PLoS Pathog ; 20(4): e1011939, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683861

RESUMEN

Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.


Asunto(s)
Epigénesis Genética , Infecciones por Virus de Epstein-Barr , Regulación Viral de la Expresión Génica , Centro Germinal , Herpesvirus Humano 4 , Latencia del Virus , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Humanos , Centro Germinal/inmunología , Centro Germinal/virología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/inmunología , Citocinas/metabolismo , Linfocitos B/virología , Linfocitos B/metabolismo
5.
PLoS Pathog ; 20(1): e1011881, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190392

RESUMEN

In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKÆ´ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.


Asunto(s)
Infecciones por VIH , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Células Endoteliales/metabolismo , Infecciones por VIH/metabolismo , Isoformas de Proteínas/metabolismo , Microambiente Tumoral
6.
Cancer ; 130(6): 985-994, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37962072

RESUMEN

BACKGROUND: Although immunotherapy has emerged as a therapeutic strategy for many cancers, there are limited studies establishing the safety and efficacy in people living with HIV (PLWH) and cancer. METHODS: PLWH and solid tumors or Kaposi sarcoma (KS) receiving antiretroviral therapy and a suppressed HIV viral load received nivolumab at 3 mg/kg every 2 weeks, in two dose deescalation cohorts stratified by CD4 count (stratum 1: CD4 count > 200/µL and stratum 2: CD4 count 100-199/µL). An expansion cohort of 24 participants with a CD4 count > 200/µL was then enrolled. RESULTS: A total of 36 PLWH received nivolumab, including 15 with KS and 21 with a variety of other solid tumors. None of the first 12 participants had dose-limiting toxicity in both CD4 strata, and five patients (14%) overall had grade 3 or higher immune related adverse events. Objective partial response occurred in nine PLWH and cancer (25%), including in six of 15 with KS (40%; 95% CI, 16.3-64.7). The median duration of response was 9.0 months overall and 12.5 months in KS. Responses were observed regardless of PDL1 expression. There were no significant changes in CD4 count or HIV viral load. CONCLUSIONS: Nivolumab has a safety profile in PLWH similar to HIV-negative subjects with cancer, and also efficacy in KS. Plasma HIV remained suppressed and CD4 counts remained stable during treatment and antiretroviral therapy, indicating no adverse impact on immune function. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02408861.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Sarcoma de Kaposi , Humanos , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Nivolumab/efectos adversos , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Sarcoma de Kaposi/tratamiento farmacológico , Recuento de Linfocito CD4 , Carga Viral
7.
Curr Opin Virol ; 62: 101364, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37672873
8.
Lancet Haematol ; 10(8): e624-e632, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532416

RESUMEN

BACKGROUND: Brentuximab vedotin in combination with doxorubicin, vinblastine, and dacarbazine (AVD) is approved in the upfront setting for advanced stage classical Hodgkin lymphoma (cHL). People living with HIV have been excluded from these studies. We aimed to understand the activity and safety of brentuximab vedotin-AVD in people living with HIV diagnosed with Hodgkin lymphoma, while focusing on HIV disease parameters and antiretroviral therapy (ART) interactions. METHODS: We present the phase 2 portion of a multicentre phase 1/2 study. Eligible patients were 18 years or older, had untreated stage II-IV HIV-associated cHL (HIV-cHL), a Karnofsky performance status of more than 30%, a CD4+ T-cell count of 50 cells per µL or more, were required to take ART, and were not on strong CYP3A4 or P-glycoprotein inhibitors. Patients were treated intravenously with 1·2 mg/kg of brentuximab vedotin (recommended phase 2 dose) with standard doses of AVD for six cycles on days 1 and 15 of a 28-day cycle. The primary endpoint of the phase 2 portion was 2-year progression-free survival (PFS), assessed in all eligible participants who began treatment. Accrual has been completed. This trial is registered at ClinicalTrials.gov, NCT01771107. FINDINGS: Between March 8, 2013, and March 7, 2019, 41 patients received study therapy with a median follow up of 29 months (IQR 16-38). 34 (83%) of 41 patients presented with stage III-IV and seven (17%) with stage II unfavourable HIV-cHL. 37 (90%) of 41 patients completed therapy, all 37 of whom achieved complete response. The 2-year PFS was 87% (95% CI 71-94) and the overall survival was 92% (78-97). The most common grade 3 or worse adverse events were peripheral sensory neuropathy (four [10%] of 41 patients), neutropenia (18 [44%]), and febrile neutropenia (five [12%]). One treatment-related death was reported, due to infection. INTERPRETATION: Brentuximab vedotin-AVD was highly active and had a tolerable adverse event rate in HIV-cHL and is an important therapeutic option for people with HIV-cHL. The complete reponse rate is encouraging and is possibly related to a unique aspect of HIV-cHL biology. Upcoming 5-year data will evaluate the sustainability of the outcomes obtained. FUNDING: National Institutes of Health and National Cancer Institute.


Asunto(s)
Infecciones por VIH , Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/patología , Brentuximab Vedotina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Doxorrubicina/uso terapéutico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico
9.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37333202

RESUMEN

The heterogeneity of cancers are driven by diverse mechanisms underlying oncogenesis such as differential 'cell-of-origin' (COO) progenitors, mutagenesis, and viral infections. Classification of B-cell lymphomas have been defined by considering these characteristics. However, the expression and contribution of transposable elements (TEs) to B cell lymphoma oncogenesis or classification have been overlooked. We hypothesized that incorporating TE signatures would increase the resolution of B-cell identity during healthy and malignant conditions. Here, we present the first comprehensive, locus-specific characterization of TE expression in benign germinal center (GC) B-cells, diffuse large B-cell lymphoma (DLBCL), Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt lymphoma (BL), and follicular lymphoma (FL). Our findings demonstrate unique human endogenous retrovirus (HERV) signatures in the GC and lymphoma subtypes whose activity can be used in combination with gene expression to define B-cell lineage in lymphoid malignancies, highlighting the potential of retrotranscriptomic analyses as a tool in lymphoma classification, diagnosis, and the identification of novel treatment groups.

10.
Pathobiology ; 90(5): 356-364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996787

RESUMEN

INTRODUCTION: Primary effusion lymphoma (PEL) is a malignant lymphomatous effusion, which by definition is Kaposi sarcoma herpesvirus/human herpesvirus 8-positive. PEL typically occurs in HIV-infected patients but can also occur in HIV-negative individuals, including in organ transplant recipients. Tyrosine kinase inhibitors (TKIs) are currently the standard of care for patients with chronic myeloid leukemia (CML), BCR::ABL1-positive. Although TKIs are extremely effective in treating CML, they alter T-cell function by inhibiting peripheral T-cell migration and altering T-cell trafficking and have been associated with the development of pleural effusions. CASE PRESENTATION: We report a case of PEL in a young, relatively immunocompetent patient with no history of organ transplant receiving dasatinib for CML, BCR::ABL1-positive. DISCUSSION: We hypothesize that the loss of T-cell function secondary to TKI therapy (dasatinib) may have resulted in the unchecked cellular proliferation of Kaposi sarcoma herpesvirus (KSHV)-infected cells, leading to the emergence of a PEL. We recommend cytologic investigation and KSHV testing in patients being treated with dasatinib for CML who present with persistent or recurrent effusions.


Asunto(s)
Infecciones por VIH , Herpesvirus Humano 8 , Leucemia Mielógena Crónica BCR-ABL Positiva , Linfoma de Efusión Primaria , Sarcoma de Kaposi , Humanos , Dasatinib/efectos adversos , Linfoma de Efusión Primaria/diagnóstico , Linfoma de Efusión Primaria/tratamiento farmacológico , Linfoma de Efusión Primaria/inducido químicamente , Sarcoma de Kaposi/inducido químicamente , Leucemia Mielógena Crónica BCR-ABL Positiva/complicaciones , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/inducido químicamente , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico
11.
Blood Cancer Discov ; 4(3): 208-227, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723991

RESUMEN

The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE: Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.


Asunto(s)
Enfermedad de Hodgkin , Células de Reed-Sternberg , Humanos , Células de Reed-Sternberg/patología , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Citometría de Flujo , Evolución Molecular
12.
Sci Adv ; 9(2): eadc8913, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638178

RESUMEN

Kaposi's sarcoma (KS) is an endothelial cancer caused by the Kaposi's sarcoma-associated herpesvirus (KSHV) and is one of the most common cancers in sub-Saharan Africa. In limited-resource settings, traditional pathology infrastructure is often insufficient for timely diagnosis, leading to frequent diagnoses at advanced-stage disease where survival is poor. In this study, we investigate molecular diagnosis of KS performed in a point-of-care device to circumvent the limited infrastructure for traditional diagnosis. Using 506 mucocutaneous biopsies collected from patients at three HIV clinics in Uganda, we achieved 97% sensitivity, 92% specificity, and 96% accuracy compared to gold standard U.S.-based pathology. The results presented in this manuscript show that LAMP-based quantification of KSHV DNA extracted from KS-suspected biopsies has the potential to serve as a successful diagnostic for the disease and that diagnosis may be accurately achieved using a point-of-care device, reducing the barriers to obtaining KS diagnosis while increasing diagnostic accuracy.

13.
Blood ; 141(8): 904-916, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36201743

RESUMEN

Burkitt lymphoma (BL) accounts for most pediatric non-Hodgkin lymphomas, being less common but significantly more lethal when diagnosed in adults. Much of the knowledge of the genetics of BL thus far has originated from the study of pediatric BL (pBL), leaving its relationship to adult BL (aBL) and other adult lymphomas not fully explored. We sought to more thoroughly identify the somatic changes that underlie lymphomagenesis in aBL and any molecular features that associate with clinical disparities within and between pBL and aBL. Through comprehensive whole-genome sequencing of 230 BL and 295 diffuse large B-cell lymphoma (DLBCL) tumors, we identified additional significantly mutated genes, including more genetic features that associate with tumor Epstein-Barr virus status, and unraveled new distinct subgroupings within BL and DLBCL with 3 predominantly comprising BLs: DGG-BL (DDX3X, GNA13, and GNAI2), IC-BL (ID3 and CCND3), and Q53-BL (quiet TP53). Each BL subgroup is characterized by combinations of common driver and noncoding mutations caused by aberrant somatic hypermutation. The largest subgroups of BL cases, IC-BL and DGG-BL, are further characterized by distinct biological and gene expression differences. IC-BL and DGG-BL and their prototypical genetic features (ID3 and TP53) had significant associations with patient outcomes that were different among aBL and pBL cohorts. These findings highlight shared pathogenesis between aBL and pBL, and establish genetic subtypes within BL that serve to delineate tumors with distinct molecular features, providing a new framework for epidemiologic, diagnostic, and therapeutic strategies.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Niño , Humanos , Adulto , Linfoma de Burkitt/patología , Herpesvirus Humano 4 , Linfoma de Células B Grandes Difuso/patología , Mutación
14.
Curr Opin Genet Dev ; 74: 101915, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35550952

RESUMEN

In eukaryotic cells, the genome is three dimensionally (3D) organized with DNA interaction dynamics and topology changes that regulate gene expression and drive cell fate. Upon antigen stimulation, naive B cells are activated and form germinal centers (GC) for the generation of memory B cells and plasma cells. Thereby, terminal B-cell differentiation and associated humoral immune response require massive but rigorous 3D DNA reorganization. Here, we review the dynamics of genome reorganization during GC formation and the impact of its alterations on lymphomagenesis from the nucleosome structure to the higher order chromosome organization. We particularly discuss the identified architects of 3D DNA in GC B cells and the role of their mutations in B-cell lymphomas.


Asunto(s)
Centro Germinal , Linfoma de Células B , Linfocitos B/metabolismo , Diferenciación Celular/genética , Cromosomas/metabolismo , Centro Germinal/metabolismo , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patología
17.
Genes (Basel) ; 13(2)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35205397

RESUMEN

The Epstein-Barr virus (EBV) is a ubiquitous γ herpesvirus strongly associated with nasopharyngeal carcinomas, and the viral oncogenicity in part relies on cellular effects of the viral latent membrane protein 1 (LMP1). It was previously described that EBV strains B95.8 and M81 differ in cell tropism and the activation of the lytic cycle. Nonetheless, it is unknown whether LMP1 from these strains have different effects when expressed in nasopharyngeal cells. Thus, herein we evaluated the effects of EBV LMP1 derived from viral strains B95.8 and M81 and expressed in immortalized nasopharyngeal cells NP69SV40T in the regulation of 91 selected cellular miRNAs. We found that cells expressing either LMP1 behave similarly in terms of NF-kB activation and cell migration. Nonetheless, the miRs 100-5p, 192-5p, and 574-3p were expressed at higher levels in cells expressing LMP1 B95.8 compared to M81. Additionally, results generated by in silico pathway enrichment analysis indicated that LMP1 M81 distinctly regulate genes involved in cell cycle (i.e., RB1), mRNA processing (i.e., NUP50), and mitochondrial biogenesis (i.e., ATF2). In conclusion, LMP1 M81 was found to distinctively regulate miRs 100-5p, 192-5p, and 574-3p, and the in silico analysis provided valuable clues to dissect the molecular effects of EBV LMP1 expressed in nasopharyngeal cells.


Asunto(s)
Infecciones por Virus de Epstein-Barr , MicroARNs , Neoplasias Nasofaríngeas , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Proteínas de la Membrana , MicroARNs/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Proteínas Virales/genética
18.
Blood ; 139(7): 1013-1025, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34479367

RESUMEN

Kaposi sarcoma (KS) herpesvirus (KSHV), also known as human herpesvirus 8, is the causal agent of KS but is also pathogenetically related to several lymphoproliferative disorders, including primary effusion lymphoma (PEL)/extracavitary (EC) PEL, KSHV-associated multicentric Castleman disease (MCD), KSHV+ diffuse large B-cell lymphoma, and germinotropic lymphoproliferative disorder. These different KSHV-associated diseases may co-occur and may have overlapping features. KSHV, similar to Epstein-Barr virus (EBV), is a lymphotropic gammaherpesvirus that is preferentially present in abnormal lymphoid proliferations occurring in immunecompromised individuals. Notably, both KSHV and EBV can infect and transform the same B cell, which is frequently seen in KSHV+ EBV+ PEL/EC-PEL. The mechanisms by which KSHV leads to lymphoproliferative disorders is thought to be related to the expression of a few transforming viral genes that can affect cellular proliferation and survival. There are critical differences between KSHV-MCD and PEL/EC-PEL, the 2 most common KSHV-associated lymphoid proliferations, including viral associations, patterns of viral gene expression, and cellular differentiation stage reflected by the phenotype and genotype of the infected abnormal B cells. Advances in treatment have improved outcomes, but mortality rates remain high. Our deepening understanding of KSHV biology, clinical features of KSHV-associated diseases, and newer clinical interventions should lead to improved and increasingly targeted therapeutic interventions.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Enfermedades Hematológicas/patología , Herpesvirus Humano 4/aislamiento & purificación , Herpesvirus Humano 8/aislamiento & purificación , Trastornos Linfoproliferativos/patología , Sarcoma de Kaposi/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Enfermedades Hematológicas/epidemiología , Enfermedades Hematológicas/virología , Humanos , Trastornos Linfoproliferativos/epidemiología , Trastornos Linfoproliferativos/virología , Sarcoma de Kaposi/virología
19.
Cell Rep ; 37(13): 110144, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965440

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This "translation initiation plasticity" (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/patología , Herpesvirus Humano 8/fisiología , Hipoxia/fisiopatología , Iniciación de la Cadena Peptídica Traduccional , Sarcoma de Kaposi/patología , Replicación Viral , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virología , Activación Viral
20.
Cancer Res ; 81(24): 6061-6070, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34580064

RESUMEN

Aberrant cell fate decisions due to transcriptional misregulation are central to malignant transformation. Histones are the major constituents of chromatin, and mutations in histone-encoding genes are increasingly recognized as drivers of oncogenic transformation. Mutations in linker histone H1 genes were recently identified as drivers of peripheral lymphoid malignancy. Loss of H1 in germinal center B cells results in widespread chromatin decompaction, redistribution of core histone modifications, and reactivation of stem cell-specific transcriptional programs. This review explores how linker histones and mutations therein regulate chromatin structure, highlighting reciprocal relationships between epigenetic circuits, and discusses the emerging role of aberrant three-dimensional chromatin architecture in malignancy.


Asunto(s)
Reprogramación Celular , Ensamble y Desensamble de Cromatina , Código de Histonas , Histonas/genética , Mutación , Neoplasias/patología , Epigenómica , Humanos , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...