Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38556639

RESUMEN

INTRODUCTION: Along with recent advances in analytical technologies, TCA-cycle intermediates are increasingly identified as promising makers for cellular ischemia and mitochondrial dysfunction during hemorrhagic shock (HS). For traumatized patients, the knowledge of the role of lipid oxidation substrates is sparse. In this study, we aimed to analyze the dynamics of systemic acylcarnitine (AcCa) release in a standardized polytrauma model with HS. METHODS: 52 male pigs (50 ± 5 kg) were randomized into two groups: Group IF (isolated fracture) was subject to a standardized femur shaft fracture. Group PT (polytrauma) was subject to a femur fracture, followed by blunt chest trauma, liver laceration and a pressure controlled hemorrhagic shock for 60 min. Resuscitation was performed with crystalloids. Fractures were stabilized by intramedullary nailing. Venous samples were collected at 6 timepoints (baseline, trauma, resuscitation, 2 h, 4 h and 6 h). Lipidomic analysis was performed via liquid chromatography coupled mass spectrometry. Measurements were collated with clinical markers and near-infrared spectrometry measurements (NIRS) of tissue perfusion. Longitudinal analyses were performed with linear mixed models and spearman's correlations were calculated. A p-value of 0.05 was defined as threshold for statistical significance. RESULTS: From a total of 303 distinct lipids, we identified two species of long-chain AcCas. Both showed a highly significant (p < 0.001) two-fold increase after HS in Group PT that promptly normalized after resuscitation. This increase was associated with a significant decrease of the base excess (p = 0.005) but recovery after resuscitation was faster. For both AcCas, there were significant correlations with decreased muscle tissue oxygen delivery (p = 0.008, p = 0.003) and significant time-lagged correlations with the increase of creatine kinase (p < 0.001, p < 0.001). CONCLUSION: Our results point to plasma AcCas as a possible indicator for mitochondrial dysfunction and cellular ischemia in HS. The more rapid normalization after resuscitation in comparison to acid base changes may warrant further investigation. STUDY TYPE: Experimental Animal Model. LEVEL OF EVIDENCE: N/A.

2.
Artif Organs ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651352

RESUMEN

BACKGROUND: In vitro assessment is mandatory for artificial heart valve development. This study aims to investigate the effects of pulse duplicator features on valve responsiveness, conduct a sensitivity analysis across valve prosthesis types, and contribute on the development of versatile pulse duplicator systems able to perform reliable prosthetic aortic valve assessment under physiologic hemodynamic conditions. METHODS: A reference pulse duplicator was established based on literature. Further optimization process led to new designs that underwent a parametric study, also involving different aortic valve prostheses. These designs were evaluated on criteria such as mean pressure differential and pulse pressure (assessed from high-fidelity pressure measurements), valve opening and closing behavior, flow, and regurgitation. Finally, the resulting optimized setup was tested under five different hemodynamic settings simulating a range of physiologic and pathologic conditions. RESULTS: The results show that both, pulse duplicator design and valve type significantly influence aortic and ventricular pressure, flow, and valve kinematic response. The optimal design comprised key features such as a compliance chamber and restrictor for diastolic pressure maintenance and narrow pulse pressure. Additionally, an atrial reservoir was included to prevent atrial-aortic interference, and a bioprosthetic valve was used in mitral position to avoid delayed valve closing effects. CONCLUSION: This study showed that individual pulse duplicator features can have a significant effect on valve's responsiveness. The optimized versatile pulse duplicator replicated physiologic and pathologic aortic valve hemodynamic conditions, serving as a reliable characterization tool for assessing and optimizing aortic valve performance.

3.
J Cardiovasc Magn Reson ; 26(1): 101031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38431078

RESUMEN

BACKGROUND: Automatic myocardial scar segmentation from late gadolinium enhancement (LGE) images using neural networks promises an alternative to time-consuming and observer-dependent semi-automatic approaches. However, alterations in data acquisition, reconstruction as well as post-processing may compromise network performance. The objective of the present work was to systematically assess network performance degradation due to a mismatch of point-spread function between training and testing data. METHODS: Thirty-six high-resolution (0.7×0.7×2.0 mm3) LGE k-space datasets were acquired post-mortem in porcine models of myocardial infarction. The in-plane point-spread function and hence in-plane resolution Δx was retrospectively degraded using k-space lowpass filtering, while field-of-view and matrix size were kept constant. Manual segmentation of the left ventricle (LV) and healthy remote myocardium was performed to quantify location and area (% of myocardium) of scar by thresholding (≥ SD5 above remote). Three standard U-Nets were trained on training resolutions Δxtrain = 0.7, 1.2 and 1.7 mm to predict endo- and epicardial borders of LV myocardium and scar. The scar prediction of the three networks for varying test resolutions (Δxtest = 0.7 to 1.7 mm) was compared against the reference SD5 thresholding at 0.7 mm. Finally, a fourth network trained on a combination of resolutions (Δxtrain = 0.7 to 1.7 mm) was tested. RESULTS: The prediction of relative scar areas showed the highest precision when the resolution of the test data was identical to or close to the resolution used during training. The median fractional scar errors and precisions (IQR) from networks trained and tested on the same resolution were 0.0 percentage points (p.p.) (1.24 - 1.45), and - 0.5 - 0.0 p.p. (2.00 - 3.25) for networks trained and tested on the most differing resolutions, respectively. Deploying the network trained on multiple resolutions resulted in reduced resolution dependency with median scar errors and IQRs of 0.0 p.p. (1.24 - 1.69) for all investigated test resolutions. CONCLUSION: A mismatch of the imaging point-spread function between training and test data can lead to degradation of scar segmentation when using current U-Net architectures as demonstrated on LGE porcine myocardial infarction data. Training networks on multi-resolution data can alleviate the resolution dependency.


Asunto(s)
Cicatriz , Medios de Contraste , Modelos Animales de Enfermedad , Interpretación de Imagen Asistida por Computador , Infarto del Miocardio , Miocardio , Valor Predictivo de las Pruebas , Sus scrofa , Animales , Medios de Contraste/administración & dosificación , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/patología , Cicatriz/diagnóstico por imagen , Cicatriz/patología , Cicatriz/fisiopatología , Miocardio/patología , Reproducibilidad de los Resultados , Redes Neurales de la Computación , Automatización , Compuestos Organometálicos/administración & dosificación , Imagen por Resonancia Cinemagnética , Aprendizaje Profundo , Imagen por Resonancia Magnética , Conjuntos de Datos como Asunto
4.
Bioeng Transl Med ; 9(2): e10631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435814

RESUMEN

Microvascular obstruction (MVO) often occurs in ST-elevation myocardial infarction (STEMI) patients after percutaneous coronary intervention (PCI). Diagnosis and treatment of MVO lack appropriate and established procedures. This study focused on two major points by using an in vitro multiscale flow model, which comprised an aortic root model with physiological blood flow and a microfluidic model of the microcirculation with vessel diameters down to 50 µm. First, the influence of porcine microthrombi (MT), injected into the fluidic microchip, on perfusion was investigated. We found that only 43% of all injected MT were fully occlusive. Second, it could also be shown that the maximal concentration of a dye (representing therapeutic agent) during intracoronary infusion could be increased on average by 58%, when proximally occluding the coronary artery by a balloon during drug infusion. The obtained results and insights enhance the understanding of perfusion in MVO-affected microcirculation and could lead to improved treatment methods for MVO patients.

5.
Microsyst Nanoeng ; 10: 8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38261856

RESUMEN

Wireless medical sensors typically utilize electromagnetic coupling or ultrasound for energy transfer and sensor interrogation. Energy transfer and management is a complex aspect that often limits the applicability of implantable sensor systems. In this work, we report a new passive temperature sensing scheme based on an acoustic metamaterial made of silicon embedded in a polydimethylsiloxane matrix. Compared to other approaches, this concept is implemented without additional electrical components in situ or the need for a customized receiving unit. A standard ultrasonic transducer is used for this demonstration to directly excite and collect the reflected signal. The metamaterial resonates at a frequency close to a typical medical value (5 MHz) and exhibits a high-quality factor. Combining the design features of the metamaterial with the high-temperature sensitivity of the polydimethylsiloxane matrix, we achieve a temperature resolution of 30 mK. This value is below the current standard resolution required in infrared thermometry for monitoring postoperative complications (0.1 K). We fabricated, simulated, in vitro tested, and compared three acoustic sensor designs in the 29-43 °C (~302-316 K) temperature range. With this concept, we demonstrate how our passive metamaterial sensor can open the way toward new zero-power smart medical implant concepts based on acoustic interrogation.

7.
J Clin Med ; 12(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068501

RESUMEN

Mitral valve prolapse (MVP) is common among heart valve disease patients, causing severe mitral regurgitation (MR). Although complications such as cardiac arrhythmias and sudden cardiac death are rare, the high prevalence of the condition leads to a significant number of such events. Through next-generation gene sequencing approaches, predisposing genetic components have been shown to play a crucial role in the development of MVP. After the discovery of the X-linked inheritance of filamin A, autosomal inherited genes were identified. In addition, the study of sporadic MVP identified several genes, including DZIP1, TNS1, LMCD1, GLIS1, PTPRJ, FLYWCH, and MMP2. The early screening of these genetic predispositions may help to determine the patient population at risk for severe complications of MVP and impact the timing of reconstructive surgery. Surgical mitral valve repair is an effective treatment option for MVP, resulting in excellent short- and long-term outcomes. Repair rates in excess of 95% and low complication rates have been consistently reported for minimally invasive mitral valve repair performed in high-volume centers. We therefore conceptualize a potential preventive surgical strategy for the treatment of MVP in patients with genetic predisposition, which is currently not considered in guideline recommendations. Further genetic studies on MVP pathology and large prospective clinical trials will be required to support such an approach.

8.
Sci Rep ; 13(1): 20211, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980386

RESUMEN

To facilitate pre-clinical animal and in-silico clinical trials for implantable pulmonary artery pressure sensors, understanding the respective species pulmonary arteries (PA) anatomy is important. Thus, morphological parameters describing PA of pigs and sheep, which are common animal models, were compared with humans. Retrospective computed tomography data of 41 domestic pigs (82.6 ± 18.8 kg), 14 sheep (49.1 ± 6.9 kg), and 49 patients (76.8 ± 18.2 kg) were used for reconstruction of the subject-specific PA anatomy. 3D surface geometries including main, left, and right PA as well as LPA and RPA side branches were manually reconstructed. Then, specific geometric parameters (length, diameters, taper, bifurcation angle, curvature, and cross-section enlargement) affecting device implantation and post-interventional device effect and efficacy were automatically calculated. For both animal models, significant differences to the human anatomy for most geometric parameters were found, even though the respective parameters' distributions also featured relevant overlap. Out of the two animal models, sheep seem to be better suitable for a preclinical study when considering only PA morphology. Reconstructed geometries are provided as open data for future studies. These findings support planning of preclinical studies and will help to evaluate the results of animal trials.


Asunto(s)
Arteria Pulmonar , Tomografía Computarizada por Rayos X , Humanos , Ovinos , Animales , Porcinos , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/anatomía & histología , Estudios Retrospectivos , Sus scrofa , Hipertrofia
9.
Eur J Cardiothorac Surg ; 64(6)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37740952

RESUMEN

OBJECTIVES: Despite the success of coronary artery bypass graft (CABG) surgery using autologous saphenous vein grafts (SVGs), nearly 50% of patients experience vein graft disease within 10 years of surgery. One contributing factor to early vein graft disease is endothelial damage during short-term storage of SVGs in inappropriate solutions. Our aim was to evaluate the effects of a novel endothelial damage inhibitor (EDI) on SVGs from patients undergoing elective CABG surgery and on venous endothelial cells (VECs) derived from these SVGs. METHODS: SVGs from 11 patients participating in an ongoing clinical registry (NCT02922088) were included in this study, and incubated with both full electrolyte solution (FES) or EDI for 1 h and then examined histologically. In 8 of 11 patients, VECs were isolated from untreated grafts, incubated with both FES and EDI for 2 h under hypothermic stress conditions and then analysed for activation of an inflammatory phenotype, cell damage and cytotoxicity, as well as endothelial integrity and barrier function. RESULTS: The EDI was superior to FES in protecting the endothelium in SVGs (74 ± 8% versus 56 ± 8%, P < 0.001). Besides confirming that the EDI prevents apoptosis in SVG-derived VECs, we also showed that the EDI temporarily reduces adherens junctions in VECs while protecting focal adhesions compared to FES. CONCLUSIONS: The EDI protects the connectivity and function of the SVG endothelium. Our data suggest that the EDI can preserve focal adhesions in VECs during short-term storage after graft harvesting. This might explain the superiority of the EDI in maintaining most of the endothelium in venous CABG surgery conduits.


Asunto(s)
Células Endoteliales , Enfermedades Vasculares , Humanos , Vena Safena/trasplante , Grado de Desobstrucción Vascular/fisiología , Puente de Arteria Coronaria/efectos adversos , Endotelio Vascular
10.
Sci Rep ; 13(1): 16198, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758769

RESUMEN

Aortic vascular graft infections have high morbidity and mortality rate, however, patients often do not show symptoms. Continuous implant surface monitoring will allow for early detection of infections on implant surfaces, which allows for antibiotic treatment prior to biofilm formation. We explore the possibility of using heat flux sensors mounted on an aortic vascular graft to sense the localized heat production at the onset of infectious growth. We apply Finite Element Model simulations to demonstrate changes of the heat transfer coefficient depending on different pulsatile flow parameters. We determine various differences, the main influence being the distance travelled from the inlet of the simulation with the highest heat transfer coefficient closest to the inlet and decreasing along the direction of travel of the fluid. The determined range of heat transfer coefficients of 200 to 4800 W/m2 was applied to a second simulation of the thermal environment of the implant. We determined the heat transfer efficiency of the aortic graft system depending on different graft materials and thicknesses. We are further able to determine that the early detection of infection is possible by comparing the simulated amount of heat flux produced locally with the resolution of a commercial heat flux sensor.


Asunto(s)
Calor , Enfermedades Vasculares , Humanos , Estudios de Factibilidad , Análisis de Elementos Finitos , Diagnóstico Precoz
11.
Biomater Adv ; 153: 213568, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591177

RESUMEN

Alternative engineering approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Similar efforts have focused on optimizing the design features of percutaneous VAD drivelines with the aim to prevent infection, omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. We examined the impact of implant's diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of small diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth. We validated these effects by quantifying the infiltration of macrophages and the level of vascularization in the fibrotic zone, highlighting the critical role of size reduction for the benign integration of transdermal implants with skin. This insight on how the biophysical properties of implants impact local tissue reactions could enable new solutions on the transdermal transmission of power, signal, and mass in a broad range of medical devices.


Asunto(s)
Líquidos Corporales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Ovinos , Piel , Epidermis , Biofisica
13.
JACC Basic Transl Sci ; 8(5): 546-564, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37325404

RESUMEN

Continuous measurement of vascular and hemodynamic parameters could improve monitoring of disease progression and enable timely clinical decision making and therapy surveillance in patients suffering from cardiovascular diseases. However, no reliable extravascular implantable sensor technology is currently available. Here, we report the design, characterization, and validation of an extravascular, magnetic flux sensing device capable of capturing the waveforms of the arterial wall diameter, arterial circumferential strain, and arterial pressure without restricting the arterial wall. The implantable sensing device, comprising a magnet and a magnetic flux sensing assembly, both encapsulated in biocompatible structures, has shown to be robust, with temperature and cyclic-loading stability. Continuous and accurate monitoring of arterial blood pressure and vascular properties was demonstrated with the proposed sensor in vitro with a silicone artery model and validated in vivo in a porcine model mimicking physiologic and pathologic hemodynamic conditions. The captured waveforms were further used to deduce the respiration frequency, the duration of the cardiac systolic phase, and the pulse wave velocity. The findings of this study not only suggest that the proposed sensing technology is a promising platform for accurate monitoring of arterial blood pressure and vascular properties, but also highlight the necessary changes in the technology and the implantation procedure to allow the translation of the sensing device in the clinical setting.

14.
Biomater Adv ; 146: 213288, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731379

RESUMEN

Polymers have the potential to replace metallic or bioprosthetic heart valve components due to superior durability and inertness while allowing for native tissue-like flexibility. Despite these appealing properties, certain polymers such as polyetheretherketone (PEEK) have issues with hemocompatibility, which have previously been addressed through assorted complex processes. In this paper, we explore the enhancement of PEEK hemocompatibility with polymer crystallinity. Amorphous, semi-crystalline and crystalline PEEK are investigated in addition to a highly crystalline carbon fiber (CF)/PEEK composite material (CFPEEK). The functional group density of the PEEK samples is determined, showing that higher crystallinity results in increased amount of surface carbonyl functional groups. The increase of crystallinity (and negatively charged groups) appears to cause significant reductions in platelet adhesion (33 vs. 1.5 % surface coverage), hemolysis (1.55 vs. 0.75 %∙cm-2), and thrombin generation rate (4840 vs. 1585 mU/mL/min/cm2). In combination with the hemocompatibility study, mechanical characterization demonstrates that tailoring crystallinity is a simple and effective method to control both hemocompatibility and mechanical performance of PEEK. Furthermore, the results display that CFPEEK composite performed very well in all categories due to its enhanced crystallinity and complete carbon encapsulation, allowing the unique properties of CFPEEK to empower new concepts in cardiovascular device design.


Asunto(s)
Polietilenglicoles , Polímeros , Benzofenonas , Cetonas/química , Ensayo de Materiales , Polietilenglicoles/química , Polímeros/uso terapéutico , Vasos Sanguíneos/trasplante
15.
Assist Technol ; 35(3): 242-247, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438604

RESUMEN

The aim of this pilot-study was to investigate the safety, feasibility and tolerability of an assisted mobilization of patients with advanced pulmonary diseases, using a lightweight, exoskeleton-type robot (Myosuit, MyoSwiss AG, Zurich, Switzerland). Ten patients performed activities of daily life (ADL) both with and without the device. The mean age was 53.6 (±5.6) years; 70% were male. The assessment of outcome included the evaluation of vital signs, adverse events, rates of perceived exertion and dyspnea (PRE, PRD), the ability to perform ADL and the individual acceptability. Robotic-assisted mobilization was feasible in all patients. No adverse events occurred. RPE and RPD showed no significant difference with or without the Myosuit (mean difference in RPE -1.7, 95%-confidence interval (CI) -1.16, 4.49; p = 0.211; mean difference in RPD 0.00, 95%-CI -1.88, 1.88; p = 0.475). 80% of patients were interested to participate in a robotic-assisted training on a regular basis. A robotic exoskeleton-assisted mobilization is safe, feasible, well-tolerated and well-accepted. The results are highly encouraging to further pursue this highly innovative approach.


Asunto(s)
Enfermedades Pulmonares , Modalidades de Fisioterapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modalidades de Fisioterapia/instrumentación , Proyectos Piloto , Dispositivos Electrónicos Vestibles , Enfermedades Pulmonares/rehabilitación
16.
JACC Cardiovasc Imaging ; 15(12): 2051-2064, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36481073

RESUMEN

BACKGROUND: Prolonged ischemia and myocardial infarction are followed by a series of dynamic processes that determine the fate of the affected myocardium toward recovery or necrosis. Metabolic adaptions are considered to play a vital role in the recovery of salvageable myocardium in the context of stunned and hibernating myocardium. OBJECTIVES: The potential of hyperpolarized pyruvate cardiac magnetic resonance (CMR) alongside functional and parametric CMR as a tool to study the complex metabolic-structural interplay in a longitudinal study of chronic myocardial infarction in an experimental pig model is investigated. METHODS: Metabolic imaging using hyperpolarized [1-13C] pyruvate and proton-based CMR including cine, T1/T2 relaxometry, dynamic contrast-enhanced, and late gadolinium enhanced imaging were performed on clinical 3.0-T and 1.5-T MR systems before infarction and at 6 days and 5 and 9 weeks postinfarction in a longitudinal study design. Chronic myocardial infarction in pigs was induced using catheter-based occlusion and compared with healthy controls. RESULTS: Metabolic image data revealed temporarily elevated lactate-to-bicarbonate ratios at day 6 in the infarcted relative to remote myocardium. The temporal changes of lactate-to-bicarbonate ratios were found to correlate with changes in T2 and impaired local contractility. Assessment of pyruvate dehydrogenase flux via the hyperpolarized [13C] bicarbonate signal revealed recovery of aerobic cellular respiration in the hibernating myocardium, which correlated with recovery of local radial strain. CONCLUSIONS: This study demonstrates the potential of hyperpolarized CMR to longitudinally detect metabolic changes after cardiac infarction over days to weeks. Viable myocardium in the area at risk was identified based on restored pyruvate dehydrogenase flux.


Asunto(s)
Infarto del Miocardio , Ácido Pirúvico , Animales , Porcinos , Bicarbonatos , Estudios Longitudinales , Valor Predictivo de las Pruebas , Infarto , Infarto del Miocardio/diagnóstico por imagen
17.
Front Cardiovasc Med ; 9: 953582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277782

RESUMEN

Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs.

18.
Biomater Adv ; 141: 213134, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36191540

RESUMEN

The behavior of cells and tissues in vivo is determined by the integration of multiple biochemical and mechanical signals. Of the mechanical signals, stretch has been studied for decades and shown to contribute to pathophysiological processes. Several different stretch devices have been developed for in vitro investigations of cell stretch. In this work, we describe a new 3D-printed uniaxial stretching device for studying cell response to rapid deformation. The device is a bistable compliant mechanism holding two equilibrium states-an unstretched and stretched configuration-without the need of an external actuator. Furthermore, it allows multiple simultaneous measurements of different levels of stretch on a single substrate and is compatible with standard immunofluorescence imaging of fixed cells as well as live-cell imaging. To demonstrate the effectiveness of the device to stretch cells, a test case using aligned myotubes is presented. Leveraging material area changes associated with deformation of the substrate, changes in nuclei density provided evidence of affine deformation between cells and substrate. Furthermore, intranuclear deformations were also assessed and shown to deform non-affinely. As a proof-of-principle of the use of the device for mechanobiological studies, we uniaxially stretched aligned healthy and dystrophic myotubes that displayed different passive mechanical responses, consistent with previous literature in the field. We also identified a new feature in the mechanoresponse of dystrophic myotubes, which is of potential interest for identifying the diseased cells based on a quick mechanical readout. While some applications of the device for elucidating passive mechanical responses are demonstrated, the simplicity of the device allows it to be potentially used for other modes of deformation with little modifications.

19.
iScience ; 25(10): 105157, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185369

RESUMEN

In this backstory, researchers from Swiss Federal Institute of Technology (ETH Zurich) who initiated an interdisciplinary program to generate innovative solutions for different cardiovascular diseases, such as myocardial infarction, valvular replacement, and movement-based rehabilitation therapy, discuss the benefits and challenges of interdisciplinary research.

20.
Front Vet Sci ; 9: 949410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118338

RESUMEN

Aortic insufficiency caused by paravalvular leakage (PVL) is one of the most feared complications following transcatheter aortic valve replacement (TAVI) in patients. Domestic pigs (Sus scrofa domestica) are a popular large animal model to study such conditions and develop novel diagnostic and therapeutic techniques. However, the models based on prosthetic valve implantation are time intensive, costly, and often hamper further hemodynamic measurements such as PV loop and 4D MRI flow by causing implantation-related wall motion abnormalities and degradation of MR image quality. This study describes in detail, the establishment of a minimally invasive porcine model suitable to study the effects of mild-to-moderate "paravalvular" aortic regurgitation on left ventricular (LV) performance and blood flow patterns, particularly under the influence of altered afterload, preload, inotropic state, and heart rate. Six domestic pigs (Swiss large white, female, 60-70 kg of body weight) were used to establish this model. The defects on the hinge point of aortic leaflets and annulus were created percutaneously by the pierce-and-dilate technique either in the right coronary cusp (RCC) or in the non-coronary cusp (NCC). The hemodynamic changes as well as LV performance were recorded by PV loop measurements, while blood flow patterns were assessed by 4D MRI. LV performance was additionally challenged by pharmaceutically altering cardiac inotropy, chronotropy, and afterload. The presented work aims to elaborate the dos and don'ts in porcine models of aortic insufficiency and intends to steepen the learning curve for researchers planning to use this or similar models by giving valuable insights ranging from animal selection to vascular access choices, placement of PV Loop catheter, improvement of PV loop data acquisition and post-processing and finally the induction of paravalvular regurgitation of the aortic valve by a standardized and reproducible balloon induced defect in a precisely targeted region of the aortic valve.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA