Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 16(1): 116, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773640

RESUMEN

Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.


Asunto(s)
Enfermedad de Alzheimer , Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Ratones , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran/toxicidad , Microbioma Gastrointestinal , Fenotipo , Masculino , Hipocampo/patología , Hipocampo/metabolismo , Femenino , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/etiología
2.
Cells ; 12(9)2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37174731

RESUMEN

Spinal cord injury (SCI) is characterized by a cascade of events that lead to sensory and motor disabilities. To date, this condition is irreversible, and no cure exists. To improve myelin repair and limit secondary degeneration, we developed a multitherapy based on nanomedicines (NMeds) loaded with the promyelinating agent triiodothyronine (T3), used in combination with systemic ibuprofen and mouse nerve growth factor (mNGF). Poly-L-lactic-co-glycolic acid (PLGA) NMeds were optimized and loaded with T3 to promote sustained release. In vitro experiments confirmed the efficacy of T3-NMeds to differentiate oligodendrocyte precursor cells. In vivo rat experiments were performed in contusion SCI to explore the NMed biodistribution and efficacy of combo drugs at short- and long-term post-lesion. A strong anti-inflammatory effect was observed in the short term with a reduction of type M1 microglia and glutamate levels, but with a subsequent increase of TREM2. In the long term, an improvement of myelination in NG2-IR, an increase in MBP content, and a reduction of the demyelination area were observed. These data demonstrated that NMeds can successfully be used to obtain more controlled local drug delivery and that this multiple treatment could be effective in improving the outcome of SCIs.


Asunto(s)
Remielinización , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Remielinización/fisiología , Distribución Tisular , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Vaina de Mielina/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Glicoproteínas de Membrana/farmacología , Receptores Inmunológicos
3.
Stem Cell Res Ther ; 14(1): 128, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170115

RESUMEN

BACKGROUND: Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS: adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS: The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS: Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.


Asunto(s)
Células Madre Mesenquimatosas , Neuroprotección , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Oxígeno/metabolismo
4.
Front Neurosci ; 17: 1111170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875668

RESUMEN

Introduction: Nerve growth factor (NGF) is a pleiotropic molecule acting on different cell types in physiological and pathological conditions. However, the effect of NGF on the survival, differentiation and maturation of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), the cells responsible for myelin formation, turnover, and repair in the central nervous system (CNS), is still poorly understood and heavily debated. Methods: Here we used mixed neural stem cell (NSC)-derived OPC/astrocyte cultures to clarify the role of NGF throughout the entire process of OL differentiation and investigate its putative role in OPC protection under pathological conditions. Results: We first showed that the gene expression of all the neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR ) dynamically changes during the differentiation. However, only TrkA and p75NTR expression depends on T3-differentiation induction, as Ngf gene expression induction and protein secretion in the culture medium. Moreover, in the mixed culture, astrocytes are the main producer of NGF protein, and OPCs express both TrkA and p75NTR . NGF treatment increases the percentage of mature OLs, while NGF blocking by neutralizing antibody and TRKA antagonist impairs OPC differentiation. Moreover, both NGF exposure and astrocyte-conditioned medium protect OPCs exposed to oxygenglucose deprivation (OGD) from cell death and NGF induces an increase of AKT/pAKT levels in OPCs nuclei by TRKA activation. Discussion: This study demonstrated that NGF is implicated in OPC differentiation, maturation, and protection in the presence of metabolic challenges, also suggesting implications for the treatment of demyelinating lesions and diseases.

5.
J Vet Intern Med ; 36(6): 2053-2062, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36196592

RESUMEN

BACKGROUND: Dogs with myxomatous mitral valve disease (MMVD) can experience progressive renal tubular damage and dysfunction. The prevalence of renal tubular damage is not known in dogs with stable MMVD. OBJECTIVE: To evaluate renal tubular damage in dogs with stable MMVD by evaluation of urinary neutrophil gelatinase-associated lipocalin (NGAL). ANIMALS: Ninety-eight MMVD dogs grouped according to the American College of Veterinary Internal Medicine (ACVIM) staging (group B1, n = 23; group B2, n = 27; group C + D, n = 48) and 46 healthy dogs. METHODS: Multicenter prospective observational study. Serum and urine chemistry including NGAL reported as uNGAL concentration (uNGAL) and normalized with urinary creatinine (uNGALC) were compared between MMVD dogs and healthy controls, and among different MMVD ACVIM stages. RESULTS: The MMVD dogs had significantly higher uNGAL and uNGALC (1204 pg/mL; range, 30-39 732 and 1816 pg/mg; range, 22-127 693, respectively) compared to healthy dogs (584 pg/mL; range, 56-4072 and 231 pg/mg; range, 15-2407, respectively; P = .002 and P < .0001, respectively). Both uNGAL and uNGALC increased with the increasing ACVIM stage (P = .001 and P < .001, respectively). CONCLUSIONS AND CLINICAL IMPORTANCE: Renal tubular damage is present in dogs with stable MMVD, as measured by increased uNGAL. This tubular damage is subclinical, occurs in all stages of MMVD even in the absence of azotemia, and increases with the severity of MMVD. Reno-protective approaches to manage MMVD dogs should be explored to slow the progression of renal tubular damage in these patients.


Asunto(s)
Lesión Renal Aguda , Enfermedades de los Perros , Enfermedades de las Válvulas Cardíacas , Perros , Animales , Lipocalina 2 , Válvula Mitral , Enfermedades de las Válvulas Cardíacas/veterinaria , Lesión Renal Aguda/veterinaria
6.
Vet Sci ; 9(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36136667

RESUMEN

The importance of trophic factors, such as nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) during the perinatal period, is now emerging. Through their functional activities of neurogenesis and angiogenesis, they play a key role in the final maturation of the nervous and vascular systems. The present study aims to: (i) evaluate the NGF and VEGF levels obtained at parturition from the mare, foal and umbilical cord vein plasma, as well as in amniotic fluid; (ii) evaluate NGF and VEGF content in the plasma of healthy foals during the first 72 h of life (T0, T24 and T72); (iii) evaluate NGF and VEGF levels at parturition in relation to the selected mares' and foals' clinical parameters; (iv) evaluate the relationship between the two trophic factors and the thyroid hormone levels (TT3 and TT4) in the first 72 h of life; (v) assess mRNA expression of NGF, VEGF and BDNF and their cell surface receptors in the placenta. Fourteen Standardbred healthy foals born from mares with normal pregnancies and parturitions were included in the study. The dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF and BDNF placental gene expression was performed using semi-quantitative real-time PCR. In foal plasma, both NGF and VEGF levels decreased significantly over time, from T0 to T24 (p = 0.0066 for NGF; p < 0.0001 for VEGF) and from T0 to T72 (p = 0.0179 for NGF; p = 0.0016 for VEGF). In foal serum, TT3 levels increased significantly over time from T0 to T24 (p = 0.0058) and from T0 to T72 (p = 0.0013), whereas TT4 levels decreased significantly over time from T0 to T24 (p = 0.0201) and from T0 to T72 (p < 0.0001). A positive correlation was found in the levels of NGF and VEGF in foal plasma at each time point (p = 0.0115; r = 0.2862). A positive correlation was found between NGF levels in the foal plasma at T0 and lactate (p = 0.0359; r = 0.5634) as well as between VEGF levels in the foal plasma at T0 and creatine kinase (p = 0.0459; r = 0.5407). VEGF was expressed in all fetal membranes, whereas NGF and its receptors were not expressed in the amnion. The close relationship between the two trophic factors in foal plasma over time and their fine expression in placental tissues appear to be key regulators of fetal development and adaptation to extra-uterine life.

7.
Vet Sci ; 9(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36136675

RESUMEN

Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare's jugular vein, umbilical cord vein and foal's jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare's and foal's clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589). In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE.

8.
Cell Tissue Res ; 388(3): 595-613, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35386010

RESUMEN

Experimental models for chronic skin lesions are excision and pressure ulcer, defined as "open" and "closed" lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Diabetes Mellitus Experimental/genética , Hipoxia , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Piel/metabolismo , Cicatrización de Heridas/fisiología
9.
Front Neurosci ; 15: 695592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335170

RESUMEN

Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.

10.
Pharmaceutics ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201089

RESUMEN

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95-1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells-OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.

11.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572341

RESUMEN

The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.


Asunto(s)
Contusiones/genética , Matriz Extracelular/metabolismo , Traumatismos de la Médula Espinal/genética , Médula Espinal/patología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Adhesión Celular/genética , Movimiento Celular/genética , Células Cultivadas , Biología Computacional , Contusiones/patología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Cultivo Primario de Células , Ratas , Médula Espinal/citología , Traumatismos de la Médula Espinal/patología , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-1/genética
12.
J Neurotrauma ; 37(3): 431-440, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31215324

RESUMEN

The lack of reliable diagnostic and prognostic markers for spinal cord injured (SCI) patients is a severe obstacle in development and testing of new therapies, and it also impairs appropriate rehabilitation care. The sparse available data on the biochemical composition of cerebrospinal fluid (CSF) during the acute and/or chronic phase of the lesion provide, up until now, inconsistent results. In this pilot study, we then explored the possibility of combining a multi-parametric and bioinformatic analysis of CSF for its biological properties tested on different cells types, suitable for investigating inflammation and re-myelination. The patient enrollment was based on stringent inclusion criteria; that is, cervical and thoracic SCI trauma, CSF collection within 24 h of trauma, type of surgical approach for spine stabilization, and absence of steroid therapy before CSF collection. Eleven SCI patients and four healthy controls were included, and in three patients, CSF was also collected at 3 months after lesion. We identified 19 proteins among the 60 investigated cytokines, chemokines, growth factors, and structural biomarkers, which are transiently regulated 24 h after SCI. A bioinformatic analysis indicated that interleukin (IL)-6 and IL-10 are in the core of the interconnected net of activated proteins. Cell-based experiments indicate that CSF from SCI patients stimulates astroglia derivation from neural precursor cells, and an inverse correlation between IL-8 CSF level and oligodendrocyte precursor cells generated from neural stem cells was also observed. Results from this pilot study suggest that using a combined bioanalytic and biological approach to analyze SCI CSF at different times after injury could be a useful approach for identifying reliable diagnostic and prognostic markers in SCI.


Asunto(s)
Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/líquido cefalorraquídeo , Traumatismos de la Médula Espinal/diagnóstico , Adulto , Anciano , Animales , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células-Madre Neurales/metabolismo , Proyectos Piloto , Células RAW 264.7 , Resultado del Tratamiento
13.
J Virol ; 90(14): 6244-6254, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27122583

RESUMEN

UNLABELLED: The wide phenotypic variability of prion diseases is thought to depend on the interaction of a host genotype with prion strains that have self-perpetuating biological properties enciphered in distinct conformations of the misfolded prion protein PrP(Sc) This concept is largely based on indirect approaches studying the effect of proteases or denaturing agents on the physicochemical properties of PrP(Sc) aggregates. Furthermore, most data come from studies on rodent-adapted prion strains, making current understanding of the molecular basis of strains and phenotypic variability in naturally occurring diseases, especially in humans, more limited. To fill this gap, we studied the effects of guanidine hydrochloride (GdnHCl) and heating on PrP(Sc) aggregates extracted from 60 sporadic Creutzfeldt-Jakob disease (CJD) and 6 variant CJD brains. While denaturation curves obtained after exposure of PrP(Sc) to increasing GdnHCl concentrations showed similar profiles among the 7 CJD types analyzed, PrP(Sc) exposure to increasing temperature revealed significantly different and type-specific responses. In particular, MM1 and VV2, the most prevalent and fast-replicating CJD types, showed stable and highly resistant PrP(Sc) aggregates, whereas VV1, a rare and slowly propagating type, revealed unstable aggregates that easily dissolved at low temperature. Taken together, our results indicate that the molecular interactions mediating the aggregation state of PrP(Sc), possibly enciphering strain diversity, are differently targeted by GdnHCl, temperature, and proteases. Furthermore, the detected positive correlation between the thermostability of PrP(Sc) aggregates and disease transmission efficiency makes inconsistent the proposed hypothesis that a decrease in conformational stability of prions results in an increase in their replication efficiency. IMPORTANCE: Prion strains are defined as infectious isolates propagating distinctive phenotypic traits after transmission to syngeneic hosts. Although the molecular basis of prion strains is not fully understood, it is largely accepted that variations in prion protein conformation drive the molecular changes leading to the different phenotypes. In this study, we exposed abnormal prion protein aggregates encompassing the spectrum of human prion strains to both guanidine hydrochloride and thermal unfolding. Remarkably, while exposure to increasing temperature revealed significant strain-specific differences in the denaturation profile of the protein, treatment with guanidine hydrochloride did not. The findings suggest that thermal and chemical denaturation perturb the structure of prion protein aggregates differently. Moreover, since the most thermostable prion protein types were those associated with the most prevalent phenotypes and most rapidly and efficiently transmitting strains, the results suggest a direct correlation between strain replication efficiency and the thermostability of prion protein aggregates.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Guanina/química , Proteínas PrPSc/química , Conformación Proteica , Humanos , Fenotipo , Proteínas PrPSc/metabolismo , Desnaturalización Proteica , Estabilidad Proteica , Temperatura
14.
Brain ; 133(10): 3030-42, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20823086

RESUMEN

Six clinico-pathological phenotypes of sporadic Creutzfeldt-Jakob disease have been characterized which correlate at the molecular level with the type (1 or 2) of the abnormal prion protein, PrP(TSE), present in the brain and with the genotype of polymorphic (methionine or valine) codon 129 of the prion protein gene. However, to what extent these phenotypes with their corresponding molecular combinations (i.e. MM1, MM2, VV1 etc.) encipher distinct prion strains upon transmission remains uncertain. We studied the PrP(TSE) type and the prion protein gene in archival brain tissues from the National Institutes of Health series of transmitted Creutzfeldt-Jakob disease and kuru cases, and characterized the molecular and pathological phenotype in the affected non-human primates, including squirrel, spider, capuchin and African green monkeys. We found that the transmission properties of prions from the common sporadic Creutzfeldt-Jakob disease MM1 phenotype are homogeneous and significantly differ from those of sporadic Creutzfeldt-Jakob disease VV2 or MV2 prions. Animals injected with iatrogenic Creutzfeldt-Jakob disease MM1 and genetic Creutzfeldt-Jakob disease MM1 linked to the E200K mutation showed the same phenotypic features as those infected with sporadic Creutzfeldt-Jakob disease MM1 prions, whereas kuru most closely resembled the sporadic Creutzfeldt-Jakob disease VV2 or MV2 prion signature and neuropathology. The findings indicate that two distinct prion strains are linked to the three most common Creutzfeldt-Jakob disease clinico-pathological and molecular subtypes and kuru, and suggest that kuru may have originated from cannibalistic transmission of a sporadic Creutzfeldt-Jakob disease of the VV2 or MV2 subtype.


Asunto(s)
Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/transmisión , Kuru/genética , Kuru/transmisión , Proteínas PrPSc/genética , Animales , Atelinae , Western Blotting , Cebus , Chlorocebus aethiops , Síndrome de Creutzfeldt-Jakob/patología , Humanos , Kuru/patología , Saimiri
15.
J Biol Chem ; 283(45): 30557-65, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18753138

RESUMEN

In prion disease, the abnormal conformer of the cellular prion protein, PrP(Sc), deposits in fibrillar protein aggregates in brain and other organs. Limited exposure of PrP(Sc) to proteolytic digestion in vitro generates a core fragment of 19-21 kDa, named PrP27-30, which is also found in vivo. Recent evidence indicates that abnormal truncated fragments other than PrP27-30 may form in prion disease either in vivo or in vitro. We characterized a novel protease-resistant PrP fragment migrating 2-3 kDa faster than PrP27-30 in Creutzfeldt-Jakob disease (CJD) brains. The fragment has a size of about 18.5 kDa when associated with PrP27-30 type 1 (21 kDa) and of 17 kDa when associated with type 2 (19 kDa). Molecular mass and epitope mapping showed that the two fragments share the primary N-terminal sequence with PrP27-30 types 1 and 2, respectively, but lack a few amino acids at the very end of C terminus together with the glycosylphosphatidylinositol anchor. The amounts of the 18.5- or 17-kDa fragments and the previously described 13-kDa PrP(Sc) C-terminal fragment relatively to the PrP27-30 signal significantly differed among CJD subtypes. Furthermore, protease digestion of PrP(Sc) or PrP27-30 in partially denaturing conditions generated an additional truncated fragment of about 16 kDa only in typical sporadic CJD (i.e. MM1). These results show that the physicochemical heterogeneity of PrP(Sc) in CJD extends to abnormal truncated forms of the protein. The findings support the notion of distinct structural "conformers" of PrP(Sc) and indicate that the characterization of truncated PrP(Sc) forms may further improve molecular typing in CJD.


Asunto(s)
Química Encefálica , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteína PrP 27-30/metabolismo , Humanos , Proteína PrP 27-30/química , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...