Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 12(1): 2261326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808403

RESUMEN

IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.


Asunto(s)
Neoplasias , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17 , Transducción de Señal , Linfocitos T CD8-positivos , Inflamación , Neoplasias/genética
2.
Sci Rep ; 13(1): 8761, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253991

RESUMEN

Cardiovascular disease (CVD) is a multisystemic and multicellular pathology that is generally associated with high levels of atherogenic lipoproteins in circulation. These lipoproteins tend to be retained and modified, for example, aggregated low-density lipoprotein (aggLDL), in the extracellular matrix of different tissues, such as the vascular wall and heart. The uptake of aggLDL generates a significant increase in cholesteryl ester (CE) in these tissues. We previously found that the accumulation of CE generates alterations in the insulin response in the heart. Although the insulin response is mainly associated with the uptake and metabolism of glucose, other studies have shown that insulin would fulfill functions in this tissue, such as regulating the calcium cycle and cardiac contractility. Here, we found that aggLDL induced-lipid accumulation altered the gene expression profile involved in processes essential for cardiac functionality, including insulin response and glucose uptake (Insr, Ins1, Pik3ip1, Slc2a4 gene expression), calcium cycle (Cacna1s and Gjc2 gene expression) and calcium-dependent cardiac contractility (Myh3), and cholesterol efflux (Abca1), in HL-1 cardiomyocytes. These observations were recapitulated using an in vivo model of hypercholesterolemic ApoE-KO mice. Altogether, these results may explain the deleterious effect of lipid accumulation in the myocardium, with important implications for lipid-overloaded associated CVD, including impaired insulin response, disrupted lipid metabolism, altered cardiac structure, and increased susceptibility to cardiovascular events.


Asunto(s)
Enfermedades Cardiovasculares , Insulina , Ratones , Animales , Insulina/metabolismo , Transcriptoma , Calcio/metabolismo , Ésteres del Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Res Sq ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066247

RESUMEN

Cardiovascular disease (CVD) is a multisystemic and multicellular pathology that is generally associated with high levels of atherogenic lipoproteins in circulation. These lipoproteins tend to be retained and modified, for example, aggregated low-density lipoprotein (aggLDL), in the extracellular matrix of different tissues, such as the vascular wall and heart. The uptake of aggLDL generates a significant increase in cholesteryl ester (CE) in these tissues. We previously found that the accumulation of CE generates alterations in the insulin response in the heart. Although the insulin response is mainly associated with the uptake and metabolism of glucose, other studies have shown that insulin would fulfill functions in this tissue, such as regulating the calcium cycle and cardiac contractility. Here, we found that aggLDL induced-lipid accumulation altered the gene expression profile involved in processes essential for cardiac functionality, including insulin response and glucose uptake ( Insr , Ins1 , Pik3ip1 , Slc2a4 gene expression), calcium cycle ( Cacna1s and Gjc2 gene expression) and calcium-dependent cardiac contractility ( Myh3 ), and cholesterol efflux ( Abca1 ), in HL-1 cardiomyocytes. These observations were recapitulated using an in vivo model of hypercholesterolemic ApoE-KO mice. Altogether, these results may explain the deleterious effect of lipid accumulation in the myocardium, with important implications for lipid-overloaded associated CVD.

4.
Sci Rep ; 12(1): 17712, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271284

RESUMEN

Transcriptional analysis of the network of transcription regulators and target pathways in exposed organisms may be a hard task when their genome remains unknown. The development of hundreds of qPCR assays, including primer design and normalization of the results with the appropriate housekeeping genes, seems an unreachable task. Alternatively, we took advantage of a whole transcriptome study on Rhinella arenarum larvae exposed to the organophosphorus pesticides azinphos-methyl and chlorpyrifos to evaluate the transcriptional effects on a priori selected groups of genes. This approach allowed us to evaluate the effects on hypothesis-selected pathways such as target esterases, detoxifying enzymes, polyamine metabolism and signaling, and regulatory pathways modulating them. We could then compare the responses at the transcriptional level with previously described effects at the enzymatic or metabolic levels to obtain global insight into toxicity-response mechanisms. The effects of both pesticides on the transcript levels of these pathways could be considered moderate, while chlorpyrifos-induced responses were more potent and earlier than those elicited by azinphos-methyl. Finally, we inferred a prevailing downregulation effect of pesticides on signaling pathways and transcription factor transcripts encoding products that modulate/control the polyamine and antioxidant response pathways. We also tested and selected potential housekeeping genes based on those reported for other species. These results allow us to conduct future confirmatory studies on pesticide modulation of gene expression in toad larvae.


Asunto(s)
Cloropirifos , Plaguicidas , Animales , Azinfosmetilo , Cloropirifos/metabolismo , Plaguicidas/farmacología , Larva , Transcriptoma , Compuestos Organofosforados/farmacología , Antioxidantes/metabolismo , Bufo arenarum/metabolismo , Esterasas/metabolismo , Poliaminas/metabolismo , Factores de Transcripción/metabolismo
5.
Microbiome ; 9(1): 117, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016169

RESUMEN

BACKGROUND: There is general consensus that consumption of dietary fermentable fiber improves cardiometabolic health, in part by promoting mutualistic microbes and by increasing production of beneficial metabolites in the distal gut. However, human studies have reported variations in the observed benefits among individuals consuming the same fiber. Several factors likely contribute to this variation, including host genetic and gut microbial differences. We hypothesized that gut microbial metabolism of dietary fiber represents an important and differential factor that modulates how dietary fiber impacts the host. RESULTS: We examined genetically identical gnotobiotic mice harboring two distinct complex gut microbial communities and exposed to four isocaloric diets, each containing different fibers: (i) cellulose, (ii) inulin, (iii) pectin, (iv) a mix of 5 fermentable fibers (assorted fiber). Gut microbiome analysis showed that each transplanted community preserved a core of common taxa across diets that differentiated it from the other community, but there were variations in richness and bacterial taxa abundance within each community among the different diet treatments. Host epigenetic, transcriptional, and metabolomic analyses revealed diet-directed differences between animals colonized with the two communities, including variation in amino acids and lipid pathways that were associated with divergent health outcomes. CONCLUSION: This study demonstrates that interindividual variation in the gut microbiome is causally linked to differential effects of dietary fiber on host metabolic phenotypes and suggests that a one-fits-all fiber supplementation approach to promote health is unlikely to elicit consistent effects across individuals. Overall, the presented results underscore the importance of microbe-diet interactions on host metabolism and suggest that gut microbes modulate dietary fiber efficacy. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Animales , Dieta , Fibras de la Dieta , Vida Libre de Gérmenes , Inulina , Ratones
6.
J Cell Biochem ; 106(3): 372-80, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19115269

RESUMEN

Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor, which binds and internalizes diverse ligands such as activated alpha(2)-macroglobulin (alpha(2)M*). LRP1 promotes intracellular signaling, which downstream mediates cellular proliferation and migration of different types of cells, including macrophages. Unlike the LDL receptor, LRP1 expression is not sensitive to cellular cholesterol levels but appears to be responsive to insulin. It has been previously demonstrated that insulin increases the cell surface presentation of LRP1 in adipocytes and hepatocytes, which is mediated by the intracellular PI(3)K/Akt signaling activation. The LRP1 protein distribution is similar to other insulin-regulated cell surface proteins, including transferring receptor (Tfr). However, in macrophages, the insulin effect on the LRP1 distribution and expression is not well characterized. Considering that macrophages play a central role in the pathogenesis of atherosclerosis, herein we evaluate the effect of insulin on the cellular expression of LRP1 in J774 macrophages-derived cells using Western blot and immunofluorescence microscopy. Our data demonstrate that insulin induces a significant decrease in the LRP1 protein content, without changing the specific mRNA level of this receptor. Moreover, insulin specifically affected the protein expression of LRP1 but not Tfr. The insulin-induced protein degradation of LRP1 in J774 cells was mediated by the activation of the PI(3)K/Akt pathway and proteasomal system by an enhanced ubiquitin-receptor conjugation. The decreased content of LRP1 induced by insulin affected the cellular internalization of alpha(2)M*. Thus, we propose that the protein degradation of LRP-1 induced by insulin in macrophages could have important effects on the pathogenesis of atherosclerosis.


Asunto(s)
Insulina/farmacología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Macrófagos/citología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , alfa-Macroglobulinas/metabolismo
7.
J Histochem Cytochem ; 51(12): 1575-80, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14623925

RESUMEN

The aim of this work was to evaluate by immunohistochemistry (IHC) the expression of both LRP-1 and urokinase-type plasminogen activator receptor (uPAR) at different developmental stages of rat prostate disease by using a prostate cancer model previously developed in our laboratory. We found that LRP-1 was weakly expressed in normal prostates and in rats with hyperplastic glands. The expression of this receptor increased and correlated with the degree of premalignant lesions (PIN I, II, and III). The IHC for uPAR in normal prostates and in premalignant lesions showed a score of immunostaining that correlated with the expression of LRP-1. On the other hand, in prostates with adenocarcinomas and undifferentiated carcinomas, LRP-1 was undetectable or weakly detected, whereas uPAR showed a significantly higher level of expression. Based on the IHC results in rat prostates with premalignant and malignant lesions and considering that LRP-1, by mediating the internalization of uPAR, is involved in the regulation of extracellular matrix remodeling and cell migration, we conclude that a decreased expression of LRP-1 could be involved with the increasing activation of plasminogen activators shown in cancers.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/biosíntesis , Neoplasias de la Próstata/metabolismo , Animales , Western Blotting , Regulación hacia Abajo , Inmunohistoquímica , Masculino , Ratas , Ratas Wistar , Receptores de Superficie Celular/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...