Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38672711

RESUMEN

Aging is generally associated with a decline in important cognitive functions that can be observed in EEG. Physical activity in older adults should be considered one of the main strategies to promote health and prevent disease in the elderly. The present study aimed to systematically review studies of EEG activity and cognitive function changes associated with physical activity in older adults. Records from PubMed, Scopus, and EBSCO databases were searched and, following the PRISMA guidelines, nine studies were included in the present systematic review. A risk of bias assessment was performed using the National Institute of Health Quality Assessment Tool for Case-control Studies instrument. The studies analyzed used two main strategies to determine the effects of physical activity on cognition and EEG: (1) multiscale entropy and power frequencies; and (2) event-related potentials. In terms of EEG activity, it can be concluded that exercise-induced neuroplasticity underlies improvements in cognitive function in healthy older adults.

2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139344

RESUMEN

The CB2 cannabinoid receptor has been found in brain areas that are part of the reward system and has been shown to play a role in food intake regulation. Herein, we conducted a systematic review of studies assessing the role of the CB2 receptor in food intake regulation. Records from the PubMed, Scopus, and EBSCO databases were screened, resulting in 13 studies that were used in the present systematic review, following the PRISMA guidelines. A risk of bias assessment was carried out using the tool of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). The studies analyzed used two main strategies: (1) the intraperitoneal or intracerebroventricular administration of a CB2 agonist/antagonist; and (2) depletion of CB2 receptors via knockout in mice. Both strategies are useful in identifying the role of the CB2 receptor in food intake in standard and palatable diets. The conclusions derived from animal models showed that CB2 receptors are necessary for modulating food intake and mediating energy balance.


Asunto(s)
Cannabinoides , Receptor Cannabinoide CB2 , Animales , Ratones , Encéfalo , Cannabinoides/metabolismo , Cannabinoides/farmacología , Dieta , Ingestión de Alimentos , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2/efectos de los fármacos , Receptor Cannabinoide CB2/metabolismo
3.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768919

RESUMEN

The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.


Asunto(s)
Giro Dentado/citología , Ventrículos Laterales/citología , Neurogénesis/fisiología , Neuronas/citología , Estriado Ventral/citología , Adulto , Animales , Hipocampo/citología , Humanos , Ratones , MicroARNs/genética , Células-Madre Neurales/citología , Neurogénesis/genética , Ratas
4.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299069

RESUMEN

The endocannabinoid system (ECS) is a crucial modulatory system in which interest has been increasing, particularly regarding the regulation of behavior and neuroplasticity. The adolescent-young adulthood phase of development comprises a critical period in the maturation of the nervous system and the ECS. Neurogenesis occurs in discrete regions of the adult brain, and this process is linked to the modulation of some behaviors. Since marijuana (cannabis) is the most consumed illegal drug globally and the highest consumption rate is observed during adolescence, it is of particular importance to understand the effects of ECS modulation in these early stages of adulthood. Thus, in this article, we sought to summarize recent evidence demonstrating the role of the ECS and exogenous cannabinoid consumption in the adolescent-young adulthood period; elucidate the effects of exogenous cannabinoid consumption on adult neurogenesis; and describe some essential and adaptive behaviors, such as stress, anxiety, learning, and memory. The data summarized in this work highlight the relevance of maintaining balance in the endocannabinoid modulatory system in the early and adult stages of life. Any ECS disturbance may induce significant modifications in the genesis of new neurons and may consequently modify behavioral outcomes.


Asunto(s)
Encéfalo/efectos de los fármacos , Cannabinoides/farmacología , Enfermedades Neurodegenerativas/fisiopatología , Neurogénesis , Conducta Social , Estrés Psicológico , Adolescente , Adulto , Encéfalo/metabolismo , Humanos , Enfermedades Neurodegenerativas/inducido químicamente , Receptores de Cannabinoides/metabolismo , Adulto Joven
5.
J Vis Exp ; (163)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986037

RESUMEN

One of the most important things in the field of adult hippocampal neurogenesis (AHN) is the identification of the newly generated cells. The immunodetection of thymidine analogs (such as 5-Bromo-2'-deoxyuridine (BrdU)) is a standard technique used for visualizing these newly generated cells. Therefore, BrdU is usually injected in small animals intraperitoneally, so the thymidine analog gets incorporated into dividing cells during DNA synthesis. Detection is performed by immunohistochemical analysis of brain slices. Every research group that has been using this technique can appreciate that it requires special attention to minute details to achieve a successful stain. For instance, an important step is DNA denaturation with HCl, which allows it to reach the cell nucleus to stain it. However, the existing scientific reports describe very few of such steps in detail. Therefore, standardizing the technique is challenging for new laboratories as it can take several months to yield positive and successful outcomes. The purpose of this work is to describe and elaborate the steps to obtain positive and successful outcomes of the immunostaining technique in detail when working with the thymidine analog BrdU. The protocol includes the reagent preparation and setup, administration of thymidine analog in a rodent, transcardial perfusion, tissue preparation, peroxidase immunohistochemical reaction, use of avidin-biotin complex, immunofluorescence, counterstaining, microscopy imaging, and cell analysis.


Asunto(s)
Bromodesoxiuridina/metabolismo , Inmunohistoquímica/métodos , Neurogénesis , Timidina/análogos & derivados , Animales , Antígenos/metabolismo , Forma del Núcleo Celular , Proliferación Celular , Giro Dentado/citología , Disección , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Ratas Wistar , Fijación del Tejido
6.
J Vis Exp ; (162)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32894266

RESUMEN

Brainwaves amplitude obtained from electroencephalography (EEG) has been well-recognized as a basis for cognitive capacity, memory, and learning on animals and humans. Adult neurogenesis mechanism is also linked to memory and learning improvement. Traditionally, researchers used to assess learning and memory parameters in rodent models by behavioral tasks. Therefore, the simultaneous monitoring of behavioral changes and EEG is particularly interesting in correlating data between brain activity and task-related behaviors. However, most of the equipment required to perform both studies are either complex, expensive, or uses a wired setup network that hinders the natural animals' movement. In this study, EEG was recorded with a wireless electrophysiology device along with the execution of a novel object recognition task (NORT). The animal's behavior was monitored simultaneously by a video tracking system. Both recordings were analyzed offline by their timestamps which were synched to link EEG signals with the animal's actions. Subjects consist of adult Wistar rats after medium-term environmental enrichment treatment. Six skull screw electrodes were fixed in pairs on both hemispheres over frontal, central, and parietal regions and were referenced to an electrode located posterior of the nasal bone. NORT protocol consists of exposing the animal to two identical objects for 10 min. After 2 h and 24 h, one of the objects was replaced with a novel one. Exploration time for each object was monitored by a behavioral tracking software (BTS) and EEG data recording. The analysis of the EEG synced with behavioral data consists of estimations of alpha and beta relative band power and comparisons between novel object recognition versus familiar object exploration, between three experimental stages. In this manuscript, we have discussed electrodes manufacturing process, epidural electrodes implantation surgery, environmental enrichment protocol, NORT protocol, BTS setup, EEG - BTS coupling for simultaneous monitoring in real-time, and EEG data analysis based on automatic events detection.


Asunto(s)
Conducta Animal/fisiología , Electroencefalografía/métodos , Hipocampo/fisiología , Memoria/fisiología , Tecnología Inalámbrica , Animales , Ondas Encefálicas/fisiología , Electrodos Implantados , Electroencefalografía/instrumentación , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Masculino , Neurogénesis , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA