Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39097543

RESUMEN

Wolverines are facultative scavengers that feed near the top of terrestrial food chains. We characterized concentrations of mercury and other trace elements in tissues of wolverine from a broad geographic area, representing much of their contemporary distribution in northwestern North America. We obtained tissues from 504 wolverines, from which mercury was measured on muscle (n = 448), kidney (n = 222), liver (n = 148), hair (n = 130), and brain (n = 52). In addition, methylmercury, seven trace elements (arsenic, cadmium, chromium, cobalt, lead, nickel, selenium), and arsenic compounds were measured on a subset of samples. Concentrations of mercury and other trace elements varied between tissues and were generally highest in kidney compared to brain, liver and muscle. Mercury was predominately as methylmercury in brain and muscle, but largely as inorganic mercury in liver and kidney. Mercury concentrations of hair were moderately correlated with those of internal tissues (Pearson r = 0.51-0.75, p ≤ 0.004), making hair a good non-lethal indicator of broad spatial or temporal differences in mercury exposure to wolverine. Arsenobetaine was the dominant arsenic compound identified in tissues, and arsenite, arsenocholine and dimethylarsinic acid were also detected. A preliminary risk assessment suggested the cadmium, lead, mercury, and selenium concentrations in our sample of wolverines were not likely to pose a risk of overt toxicological effects. This study generated a comprehensive dataset on mercury and other trace elements in wolverine, which will support future contaminants study of this northern terrestrial carnivore.

2.
Environ Pollut ; 358: 124480, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968985

RESUMEN

A holistic understanding of the chemical recovery of lakes from arsenic (As) pollution requires consideration of within-lake biogeochemical cycling of As and processes occurring in the surrounding catchment. This study used a watershed mass balance approach, complemented by experimental sediment incubations, to assess the mobility and transport of As within a subarctic watershed (155 km2) impacted by more than 60 years of atmospheric mining emissions. The period of record spanned a transition from drought to high streamflow between September 2017 and September 2019, which yielded insights into the interacting effects of hydrology and within-lake biogeochemical cycling of As. Internal loading of As from contaminated lake sediments (25-46 kg As year-1) and contributions from terrestrial sources (16-56 kg As yr-1) continue to negatively impact lake water quality (19-144 µg As L-1), but the relative importance of these loads varies seasonally and inter-annually in response to changing hydrological conditions. Wet conditions resulted in greater transport of As from terrestrial reservoirs and upstream areas, shorter lake water retention time, and increased the downstream export of As. During dry periods, the lake was disconnected from the surrounding watershed resulting in limited terrestrial contributions and longer lake water residence time, which delayed recovery due to the greater relative influence of internal loading from contaminated sediments. This study highlights that changing hydroclimatic regimes will alter trajectories of chemical recovery for arsenic impacted lakes through the coupling of within-lake and watershed transport processes.

3.
Ecotoxicology ; 33(4-5): 325-396, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38683471

RESUMEN

An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.


Asunto(s)
Monitoreo Biológico , Monitoreo del Ambiente , Mercurio , Mercurio/análisis , Monitoreo Biológico/métodos , Animales , Monitoreo del Ambiente/métodos , Biota , Contaminantes Químicos del Agua/análisis , Aves , Compuestos de Metilmercurio/análisis , Peces/metabolismo
4.
Environ Sci Pollut Res Int ; 31(13): 20586-20600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374506

RESUMEN

We investigated trophic transfer of cadmium (Cd) through an Arctic marine food web in Hudson Bay and compared it with mercury (Hg), a metal known to strongly biomagnify. We evaluated blue mussel, sea urchin, common eider, sculpin, Arctic cod, and ringed seal for the influence of dietary and biological variables on variation in Cd and Hg concentrations. Age and size influenced metal concentrations among individuals within a vertebrate species. Consumer carbon and sulfur isotope values were correlated with their Cd and Hg concentrations, indicating habitat-specific feeding influenced metal bioaccumulation. Trophic transfer patterns for Cd depended on the vertebrate tissue, with food web biodilution observed for the muscle but not the liver. Liver Cd concentrations were higher in ringed seal and some common eider relative to prey. In contrast, we observed mercury biomagnification for both tissues. Tissue- and species-specific physiology can explain discrepancies of Cd trophic transfer in this Arctic marine food web.


Asunto(s)
Patos , Mercurio , Phocidae , Contaminantes Químicos del Agua , Humanos , Animales , Mercurio/análisis , Cadena Alimentaria , Cadmio/análisis , Bahías , Metales , Regiones Árticas , Canadá , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Peces
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...