Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38004861

RESUMEN

In this study, we developed an analytic model to design a trench metal-insulator-semiconductor (MIS) field plate (FP) structure for the edge termination of a vertical GaN PN diode. The key parameters considered in the trench MIS FP structure include trench depth, MIS dielectric material and thickness, and interface charge density of MIS. The boundary conditions are defined based on the maximum allowed electric field strengths at the dielectric and semiconductor regions. The developed model was validated using TCAD simulations. As an example, a 1 kV GaN vertical PN diode was designed using the optimized FP structure, which exhibited the same breakdown voltage characteristics as an ideal one-dimensional PN diode structure without edge effects. This proposed simple analytic model offers a design guideline for the trench MIS FP for the edge termination of vertical PN diodes, enabling efficient design without the need for extensive TCAD simulations, thus saving significant time and effort.

2.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37050525

RESUMEN

We investigated the hydrogen gas sensors based on AlGaN/GaN high electron mobility transistors (HEMTs) for high temperature sensing operation. The gate area of the sensor was functionalized using a 10 nm Pd catalyst layer for hydrogen gas sensing. A thin WO3 layer was deposited on top of the Pd layer to enhance the sensor selectivity toward hydrogen gas. At 200 °C, the sensor exhibited high sensitivity of 658% toward 4%-H2, while exhibiting only a little interaction with NO2, CH4, CO2, NH3, and H2S. From 150 °C to 250 °C, the 10 ppm hydrogen response of the sensor was at least eight times larger than other target gases. These results showed that this sensor is suitable for H2 detection in a complex gas environment at a high temperature.

3.
Materials (Basel) ; 15(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36363066

RESUMEN

The transport mechanism of HfO2-based metal-ferroelectric-metal (MFM) capacitors was investigated using low-frequency noise (LFN) measurements for the first time. The current-voltage measurement results revealed that the leakage behavior of the fabricated MFM capacitor was caused by the trap-related Poole-Frenkel transport mechanism, which was confirmed by the LFN measurements. The current noise power spectral densities (SI) obtained from the LFN measurements followed 1/f noise shapes and exhibited a constant electric field (E) × SI/I2 noise behavior. No polarization dependency was observed in the transport characteristics of the MFM capacitor owing to its structural symmetry.

4.
Micromachines (Basel) ; 13(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36014107

RESUMEN

A normally-off ß-Ga2O3 metal-oxide-semiconductor field-effect transistor (MOSFET) is proposed using a technology computer-aided design (TCAD) device simulation, which employs an epitaxial drift layer grown on an n-type low-doped body layer. The low-doped body layer under the MOS gate enabled normally-off operation, whereas the epitaxial drift layer determined the on-resistance and breakdown characteristics. The effects of the doping concentration of each layer and thickness of the drift channel layer on the device characteristics were investigated to design a device with a breakdown voltage of 1 kV. A threshold voltage of 1.5 V and a breakdown voltage of 1 kV were achieved by an n-type body layer with a doping concentration of 1 × 1015 cm-3 and an n-type drift layer with a doping concentration of 3 × 1017 cm-3, a thickness of 150 nm, and a gate-to-drain distance of 9.5 µm; resulting in an on-resistance of 25 mΩ·cm2.

5.
Materials (Basel) ; 15(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35329549

RESUMEN

In this study, we evaluated the temperature- and frequency-dependent ferroelectric characteristics of TiN/undoped HfO2/TiN metal-ferroelectric-metal (MFM) capacitors in which an undoped HfO2 film was deposited through atomic layer deposition (ALD). Successful ferroelectric characteristics were achieved after postdeposition annealing at 650 °C, which exhibited a remanent polarization of 8 µC/cm2 and a coercive electric field of 1.6 MV/cm at 25 °C (room temperature). The ferroelectric property was maintained at 200 °C and decreased as the temperature increased. The ferroelectric property was completely lost above 320 °C and fully recovered after cooling. The frequency dependency was evaluated by bias-dependent capacitance-voltage and s-parameter measurements, which indicated that the ferroelectric property was maintained up to several hundred MHz. This study reveals the ultimate limitations of the application of an undoped HfO2 MFM capacitor.

6.
Micromachines (Basel) ; 12(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068454

RESUMEN

AlGaN/GaN HEMT hydrogen gas sensors were optimized by AlGaN barrier thickness in the gate-source connected configuration demonstrated high response and robust stability up to 500 °C. First, we found that the hydrogen sensing performance of a conventional normally-on HEMT-based sensor was enhanced when zero voltage was applied on the gate in comparison with a floating-gate condition due to a reduced level of the base current. In the next step, to take advantage of the response increase by VGS = 0 V, a new type of sensor with a source-connected gate (SCG) was fabricated to utilize the normally-on operation of the GaN HEMT sensor as a two-terminal device. AlGaN barrier thickness was thinned by the dry-etching process to gain higher transconductance at a zero-gate bias with the reduction of the distance from the 2DEG channel to the AlGaN surface, thereby significantly improve the hydrogen response. The SCG GaN sensor with an ultra-thin AlGaN barrier (9 nm) exhibited responses of 85% and 20% at 200 and 500 °C, respectively, onto 4%-hydrogen gas, which demonstrates a promising ability for harsh environment applications.

7.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071164

RESUMEN

An AlGaN/GaN heterostructure based hydrogen sensor was fabricated using a dual catalyst layer with ZnO-nanoparticles (NPs) atop of Pd catalyst film. The ZnO-NPs were synthesized to have an average diameter of ~10 nm and spin coated on the Pd catalyst layer. Unlike the conventional catalytic reaction, the fabricated sensors exhibited room temperature operation without heating owing to the photocatalytic reaction of the ZnO-NPs with ultraviolet illumination at 280 nm. A sensing response of 25% was achieved for a hydrogen concentration of 4% at room temperature with fast response and recovery times; a response time of 8 s and a recovery time of 11 s.

8.
J Nanosci Nanotechnol ; 21(11): 5736-5741, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33980387

RESUMEN

We investigated the heat dissipation in heterostructure field-effect transistors (HFETs) using microRaman measurement of the temperature in active AIGaN/GaN. By varying the gate structure, the heat dissipation through the gate was clearly revealed. The temperature increased to 120 °C at the flat gate device although the inserted gate increased to only 37 °C. Our results showed that the inserted gate structure reduced the self-heating effect by three times compared to the flat gate structure. Temperature mapping using micro-Raman measurement confirmed that the temperature of the near gate area was lower than that of the near drain area. This indicated that the inserted gate electrode structure effectively prohibited self-heating effects.

9.
Micromachines (Basel) ; 12(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802182

RESUMEN

In this study, we proposed a rectifying drain electrode that was embedded in a p-GaN gate AlGaN/GaN heterojunction field-effect transistor to achieve the unidirectional switching characteristics, without the need for a separate reverse blocking device or an additional process step. The rectifying drain electrode was implemented while using an embedded p-GaN gating electrode that was placed in front of the ohmic drain electrode. The embedded p-GaN gating electrode and the ohmic drain electrode are electrically shorted to each other. The concept was validated by technology computer aided design (TCAD) simulation along with an equivalent circuit, and the proposed device was demonstrated experimentally. The fabricated device exhibited the unidirectional characteristics successfully, with a threshold voltage of ~2 V, a maximum current density of ~100 mA/mm, and a forward drain turn-on voltage of ~2 V.

10.
J Nanosci Nanotechnol ; 21(8): 4434-4437, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714340

RESUMEN

Heat dissipation properties are very important in AlGaN/GaN RF high electron mobility transistor (HEMT) devices operating at high frequency and high power. Therefore, in order to extract the thermal conductivity of the substrate and device, which are essential for the analysis of the heat dissipation characteristics, various methods of extraction were attempted. And this experiments were conducted in parallel with micro-raman measurement and thermal simulation. As a result, it was possible to extract the thermal conductivity of each GaN-on-diamond epi layer by matching the thermal simulation data and the shift of the micro-raman peak according to various operating states and temperatures of the transmission line method (TLM) pattern. In particular, we tried to extract the thermal boundary resistance (TBR) of the interface layer (SiNx) for adhesion between GaN and diamond, which greatly affects the thermal conductivity of the device, and successfully extracted the following thermal conductivity value of KTBR = 3.162·(T/300)-0.8 (W/mK) from GaN and diamond interface layer.

11.
Materials (Basel) ; 13(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230767

RESUMEN

This study investigated the effects of a thin aluminum oxynitride (AlOxNy) gate insulator on the electrical characteristics of AlGaN/GaN-on-SiC metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs). The fabricated AlGaN/GaN-on-SiC MIS-HEMTs exhibited a significant reduction in gate leakage and off-state drain currents in comparison with the conventional Schottky-gate HEMTs, thus enhancing the breakdown voltage. The effects of gate recess were also investigated while using recessed MIS-HEMT configuration. The Johnson's figures of merit (= fT × BVgd) for the fabricated MIS-HEMTs were found to be in the range of 5.57 to 10.76 THz·V, which is the state-of-the-art values for GaN-based HEMTs without a field plate. Various characterization methods were used to investigate the quality of the MIS and the recessed MIS interface.

12.
J Nanosci Nanotechnol ; 20(7): 4404-4408, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31968484

RESUMEN

We have developed a Pd-functionalized hydrogen gas sensor based on a recessed AlGaN/GaN heterostructure field-effect transistor. The AlGaN barrier layer under the Pd catalyst was partially etched to enhance its sensitivity. Both low-power consumption and high sensitivity were achieved by employing a recessed structure. Sensor characterization was carried out at the temperature range from room temperature to 250 °C, among which the best sensing characteristics were observed at 200 °C. A sensitivity of 380% with a response time of 0.25 s was achieved at a bias voltage of 0.3 V at 200 °C under a hydrogen exposure concentration of 4%. The standby power consumption was only 2 µW for the sensing area of 100×28 µm² due to the low standby current, which was caused by the recessed AlGaN barrier layer.

13.
Materials (Basel) ; 12(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795462

RESUMEN

The influence of oxygen-plasma treatment on in situ SiN/AlGaN/GaN MOS high electron mobility transistor with SiO2 gate insulator was investigated. Oxygen-plasma treatment was performed on in situ SiN, before SiO2 gate insulator was deposited by plasma-enhanced chemical vapor deposition (PECVD). DC I-V characteristics were not changed by oxygen plasma treatment. However, pulsed I-V characteristics were improved, showing less dispersion compared to non-treated devices. During short-term gate bias stress, the threshold voltage shift was also smaller in a treated device than in an untreated one. X-ray photoemission spectroscopy also revealed that SiO2 on in situ SiN with oxygen-plasma treatment has an O/Si ratio close to the theoretical value. This suggests that the oxygen plasma treatment-modified surface condition of the SiN layer is favorable to SiO2 formation by PECVD.

14.
Sensors (Basel) ; 19(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888143

RESUMEN

A Pd-functionalized hydrogen gas sensor was fabricated on an AlGaN/GaN-on-Si heterostructure platform. The AlGaN layer under the Pd catalyst area was partially recessed by plasma etching, which resulted in a low standby current level enhancing the sensor response. Sensor stability and power consumption depending on operation conditions were carefully investigated using two different bias modes: constant voltage bias mode and constant current bias mode. From the stability point of view, high voltage operation is better than low voltage operation for the constant voltage mode of operation, whereas low current operation is preferred over high current operation for the constant current mode of operation. That is, stable operation with lower standby power consumption can be achieved with the constant current bias operation. The fabricated AlGaN/GaN-on-Si hydrogen sensor exhibited excellent sensing characteristics; a response of 120% with a response time of < 0.4 s at a bias current density of 1 mA/mm at 200 °C. The standby power consumption was only 0.54 W/cm2 for a sensing catalyst area of 100 × 24 µm2.

15.
Opt Express ; 26(7): 8296-8300, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715798

RESUMEN

Light absorption at the surface of a photodiode can be enhanced by employing nanostructures smaller than the wavelength of interest. In this study, a ZnO quantum dot (QD) coating layer was investigated for improving the light absorption of gallium nitride (GaN) ultraviolet (UV) photodiodes. A GaN surface coated with a ZnO QD solution exhibited significantly lower surface reflection than an uncoated GaN surface, which, in turn, improved the responsivity of the GaN photodiode. In comparison with other nanostructure or multilayer thin film processes, the proposed ZnO QD coating process is simple and effective in enhancing UV light absorption.

16.
J Nanosci Nanotechnol ; 16(1): 144-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27398439

RESUMEN

Graphene has several unique physical, optical and electrical properties such as a two-dimensional (2D) planar structure, high optical transparency and high carrier mobility at room temperature. These make graphene interesting for electrical biosensing. Using a catalyst-free chemical vapor deposition (CVD) method, graphene film is grown on a sapphire substrate. There is a single or a few sheets as confirmed by Raman spectroscopy and atomic force microscopy (AFM). Electrical graphene biosensors are fabricated to detect large-sized biological analytes such as cancer cells. Human colorectal carcinoma cells are sensed by the resistance change of an active bio-functionalized graphene device as the cells are captured by the immobilized antibody surface. The functionalized sensors show an increase in resistance as large as ~20% of the baseline with a small number of adhered cells. This study suggests that the bio-functionalized electrical graphene sensors on sapphire, which is a highly transparent material, can potentially detect circulating tumor cells (CTCs) and monitor cellular electrical behavior while being compatible with fluorescence-based optical-detection bioassays.


Asunto(s)
Óxido de Aluminio/química , Anticuerpos Antineoplásicos/química , Técnicas Biosensibles/métodos , Grafito/química , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Humanos , Microscopía de Fuerza Atómica
17.
J Nanosci Nanotechnol ; 14(4): 2979-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24734720

RESUMEN

Graphene was grown on (0001) quartz substrate (z-cut) using catalyst free Chemical Vapor Deposition (CVD). Methane was used as a carbon source and hydrogen was introduced independently to optimize the growth. The effect of growth temperature was investigated while varying the temperature between 1000 and 1300 degrees C. With an optimized condition, a thin (< or = 2 mono-layer) continuous graphene film was grown as confirmed by Raman spectroscopy, optical transmission, and electrical measurements. The best quality film showed the Raman D-peak to G-peak intensity ratio of approximately 0.8 with the 2D-peak width of approximately 60 cm(-1). High resolution X-ray Photoelectron Spectroscopy (XPS) revealed that the grown graphene is slightly oxidized but there is no detectable Si--C chemical bond in the graphene/quartz system. Hall effect measurements exhibited a carrier mobility of approximately 400 cm2/V x s with a sheet carrier density of approximately 5 x 10(12) cm(-2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA