Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 3(5): 100304, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37228746

RESUMEN

Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.

2.
Nat Immunol ; 24(3): 516-530, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732424

RESUMEN

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Asunto(s)
Fosfatos de Fosfatidilinositol , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Linfocitos T CD8-positivos/metabolismo
3.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711952

RESUMEN

Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we have substantially improved the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.

4.
Nat Commun ; 13(1): 3512, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717416

RESUMEN

Prime editing enables search-and-replace genome editing but is limited by low editing efficiency. We present a high-throughput approach, the Peptide Self-Editing sequencing assay (PepSEq), to measure how fusion of 12,000 85-amino acid peptides influences prime editing efficiency. We show that peptide fusion can enhance prime editing, prime-enhancing peptides combine productively, and a top dual peptide-prime editor increases prime editing significantly in multiple cell lines across dozens of target sites. Top prime-enhancing peptides function by increasing translation efficiency and serve as broadly useful tools to improve prime editing efficiency.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Línea Celular , Fusión Génica , Péptidos/genética
5.
bioRxiv ; 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32869031

RESUMEN

The adenosine analogue remdesivir has emerged as a front-line antiviral treatment for SARS-CoV-2, with preliminary evidence that it reduces the duration and severity of illness1.Prior clinical studies have identified adverse events1,2, and remdesivir has been shown to inhibit mitochondrial RNA polymerase in biochemical experiments7, yet little is known about the specific genetic pathways involved in cellular remdesivir metabolism and cytotoxicity. Through genome-wide CRISPR-Cas9 screening and RNA sequencing, we show that remdesivir treatment leads to a repression of mitochondrial respiratory activity, and we identify five genes whose loss significantly reduces remdesivir cytotoxicity. In particular, we show that loss of the mitochondrial nucleoside transporter SLC29A3 mitigates remdesivir toxicity without a commensurate decrease in SARS-CoV-2 antiviral potency and that the mitochondrial adenylate kinase AK2 is a remdesivir kinase required for remdesivir efficacy and toxicity. This work elucidates the cellular mechanisms of remdesivir metabolism and provides a candidate gene target to reduce remdesivir cytotoxicity.

6.
Enzyme Microb Technol ; 137: 109515, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32423667

RESUMEN

Serine palmitoyltransferase (SPTase), the first enzyme of the sphingolipid biosynthesis pathway, produces 3-ketodihydrosphingosine by a Claisen-like condensation/decarboxylation reaction of l-Ser and palmitoyl-CoA (n-C16-CoA). Previous structural analysis of Sphingomonas paucimobilis SPTase (SpSPTase) revealed a dynamic active site loop (RPPATP; amino acids 378-383) in which R378 (underlined) forms a salt bridge with the carboxylic acid group of the PLP : l-Ser external aldimine. We hypothesized that this interaction might play a key role in acyl group substrate selectivity and therefore performed site-saturation mutagenesis at position 378 based on semi-rational design to expand tolerance for shorter acyl-CoA's. The resulting library was initially screened for the reaction between l-Ser and dodecanoyl-CoA (n-C12-CoA). The most interesting mutant (R378 K) was then purified and compared to wild-type SpSPTase against a panel of acyl-CoA's. These data showed that the R378 K substitution shifted the acyl group preference to shorter chain lengths, opening the possibility of using this and other engineered variants for biocatalytic C-C bond-forming reactions.


Asunto(s)
Acilcoenzima A/metabolismo , Ingeniería Metabólica/métodos , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Sphingomonas/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Ensayos Analíticos de Alto Rendimiento , Modelos Moleculares , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Especificidad por Sustrato
7.
Cell Stem Cell ; 26(6): 938-950.e6, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32459995

RESUMEN

Empirical optimization of stem cell differentiation protocols is time consuming, is laborintensive, and typically does not comprehensively interrogate all relevant signaling pathways. Here we describe barcodelet single-cell RNA sequencing (barRNA-seq), which enables systematic exploration of cellular perturbations by tagging individual cells with RNA "barcodelets" to identify them on the basis of the treatments they receive. We apply barRNA-seq to simultaneously manipulate up to seven developmental pathways and study effects on embryonic stem cell (ESC) germ layer specification and mesodermal specification, uncovering combinatorial effects of signaling pathway activation on gene expression. We further develop a data-driven framework for identifying combinatorial signaling perturbations that drive cells toward specific fates, including several annotated in an existing scRNA-seq gastrulation atlas, and use this approach to guide ESC differentiation into a notochord-like population. We expect that barRNA-seq will have broad utility for investigating and understanding how cooperative signaling pathways drive cell fate acquisition.


Asunto(s)
Células Madre Embrionarias , Transducción de Señal , Diferenciación Celular/genética , Estratos Germinativos , RNA-Seq , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA