Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 27(1): 159-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26015452

RESUMEN

Macrophages are a heterogeneous cell type implicated in injury, repair, and fibrosis after AKI, but the macrophage population associated with each phase is unclear. In this study, we used a renal bilateral ischemia-reperfusion injury mouse model to identify unique monocyte/macrophage populations by differential expression of Ly6C in CD11b(+) cells and to define the function of these cells in the pathophysiology of disease on the basis of microarray gene signatures and reduction strategies. Macrophage populations were isolated from kidney homogenates by fluorescence-activated cell sorting for whole genome microarray analysis. The CD11b(+)/Ly6C(high) population associated with the onset of renal injury and increase in proinflammatory cytokines, whereas the CD11b(+)/Ly6C(intermediate) population peaked during kidney repair. The CD11b(+)/Ly6C(low) population emerged with developing renal fibrosis. Principal component and hierarchical cluster analyses identified gene signatures unique to each population. The CD11b(+)/Ly6C(intermediate) population had a distinct phenotype of wound healing, confirmed by results of studies inhibiting the macrophage colony-stimulating factor 1 receptor,whereas the CD11b(+)/Ly6C(low) population had a profibrotic phenotype. All populations, including the CD11b(+)/Ly6C(high) population, carried differential inflammatory signatures. The expression of M2-specific markers was detected in both the CD11b(+)/Ly6C(intermediate) and CD11b(+)/Ly6C(low) populations, suggesting these in vivo populations do not fit into the traditional classifications defined by in vitro systems. Results of this study in a renal ischemia-reperfusion injury model allow phenotype and function to be assigned to CD11b(+)/Ly6C(+) monocyte/macrophage populations in the pathophysiology of disease after AKI.


Asunto(s)
Antígenos Ly/biosíntesis , Riñón/metabolismo , Macrófagos/clasificación , Daño por Reperfusión/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Daño por Reperfusión/sangre
2.
PLoS One ; 8(8): e70464, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940580

RESUMEN

Recent findings indicate that elderly patients with acute kidney injury (AKI) have an increased incidence of progression to chronic kidney disease (CKD) due to incomplete recovery from an acute insult. In the current study, a co-morbid model of AKI was developed to better mimic the patient population and to investigate whether age exacerbates the fibrosis and inflammation that develop in the sequelae of progressive kidney disease following acute injury. Young (8-10 weeks) and aged (46-49 weeks) C57BL/6 mice were subjected to 30 min bilateral renal ischemia-reperfusion (I/R) to induce AKI. The aged animals have greater mortality and prolonged elevation of plasma creatinine correlating with less tubular epithelial cell proliferation compared to the young. Six weeks post-reperfusion, interstitial fibrosis is greater in aged kidneys based on picrosirius red staining and immunolocalization of cellular fibronectin, collagen III and collagen IV. Aged kidneys 6 weeks post-reperfusion also express higher levels of p53 and p21 compared to the young, correlating with greater increases in senescence associated (SA) ß-galactosidase, a known marker of cellular senescence. A higher influx of F4/80(+) macrophages and CD4(+) T lymphocytes is measured and is accompanied by increases in mRNA of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α). Importantly, microvascular density is significantly less, correlating with an increase in nitro-tyrosine, a marker of oxidative stress. Collectively, these data demonstrate that prolonged acute injury in the aged animals results in an accelerated progression of kidney disease in a chronic state.


Asunto(s)
Lesión Renal Aguda/patología , Senescencia Celular/fisiología , Fibrosis/patología , Riñón/patología , Daño por Reperfusión/patología , Lesión Renal Aguda/metabolismo , Animales , Quimiocina CCL2/metabolismo , Fibrosis/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Nat Med ; 13(8): 992-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17676052

RESUMEN

Soft tissue sarcomas are mesenchymal tumors that are fatal in approximately one-third of patients. To explore mechanisms of sarcoma pathogenesis, we have generated a mouse model of soft tissue sarcoma. Intramuscular delivery of an adenovirus expressing Cre recombinase in mice with conditional mutations in Kras and Trp53 was sufficient to initiate high-grade sarcomas with myofibroblastic differentiation. Like human sarcomas, these tumors show a predilection for lung rather than lymph node metastasis. Using this model, we showed that a prototype handheld imaging device can identify residual tumor during intraoperative molecular imaging. Deletion of the Ink4a-Arf locus (Cdkn2a), but not Bak1 and Bax, could substitute for mutation of Trp53 in this model. Deletion of Bak1 and Bax, however, was able to substitute for mutation of Trp53 in the development of sinonasal adenocarcinoma. Therefore, the intrinsic pathway of apoptosis seems sufficient to mediate p53 tumor suppression in an epithelial cancer, but not in this model of soft tissue sarcoma.


Asunto(s)
Modelos Animales de Enfermedad , Sarcoma/patología , Animales , Transformación Celular Neoplásica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Ratones , Ratones Noqueados , Sarcoma/genética , Sarcoma/metabolismo , Factores de Tiempo , Proteína p14ARF Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...