Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7404, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39191776

RESUMEN

Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.


Asunto(s)
Segregación Cromosómica , Replicación del ADN , Neurogénesis , Neurogénesis/genética , Animales , Humanos , Ratones , Daño del ADN , Transducción de Señal , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Mitosis , Mosaicismo
2.
EMBO J ; 42(18): e114990, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37548337

RESUMEN

The building blocks for RNA and DNA are made in the cytosol, meaning mitochondria depend on the import and salvage of ribonucleoside triphosphates (rNTPs) and deoxyribonucleoside triphosphates (dNTPs) for the synthesis of their own genetic material. While extensive research has focused on mitochondrial dNTP homeostasis due to its defects being associated with various mitochondrial DNA (mtDNA) depletion and deletion syndromes, the investigation of mitochondrial rNTP homeostasis has received relatively little attention. In this issue of the EMBO Journal, Grotehans et al provide compelling evidence of a major role for NME6, a mitochondrial nucleoside diphosphate kinase, in the conversion of pyrimidine ribonucleoside diphosphates into the corresponding triphosphates. These data also suggest a significant physiological role for NME6, as its absence results in the depletion of mitochondrial transcripts and destabilization of the electron transport chain (Grotehans et al, 2023).


Asunto(s)
Ribonucleósidos , Ribonucleótidos , Ribonucleótidos/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Nucleótidos
3.
DNA Repair (Amst) ; 129: 103541, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481989

RESUMEN

The generally accepted model assumes that leading strand synthesis is performed by Pol ε, while lagging-strand synthesis is catalyzed by Pol δ. Pol ε has been shown to target the leading strand by interacting with the CMG helicase [Cdc45 Mcm2-7 GINS(Psf1-3, Sld5)]. Proper functioning of the CMG-Pol ɛ, the helicase-polymerase complex is essential for its progression and the fidelity of DNA replication. Dpb2p, the essential non-catalytic subunit of Pol ε plays a key role in maintaining the correct architecture of the replisome by acting as a link between Pol ε and the CMG complex. Using a temperature-sensitive dpb2-100 mutant previously isolated in our laboratory, and a genetic system which takes advantage of a distinct mutational signature of the Pol δ-L612M variant which allows detection of the involvement of Pol δ in the replication of particular DNA strands we show that in yeast cells with an impaired Dpb2 subunit, the contribution of Pol δ to the replication of the leading strand is significantly increased.


Asunto(s)
Replicación del ADN , Proteínas de Saccharomyces cerevisiae , ADN/genética , ADN Helicasas/metabolismo , ADN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Methods Mol Biol ; 2615: 267-280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807798

RESUMEN

Defects in deoxyribonucleoside triphosphate (dNTP) metabolism are associated with a number of mitochondrial DNA (mtDNA) depletion syndromes (MDS). These disorders affect the muscles, liver, and brain, and the concentrations of dNTPs in these tissues are already normally low and are, therefore, difficult to measure. Thus, information about the concentrations of dNTPs in tissues of healthy animals and animals with MDS are important for mechanistic studies of mtDNA replication, analysis of disease progression, and the development of therapeutic interventions. Here, we present a sensitive method for the simultaneous analysis of all four dNTPs as well as all four ribonucleoside triphosphates (NTPs) in mouse muscles using hydrophilic interaction liquid chromatography coupled with triple quadrupole mass spectrometry. The simultaneous detection of NTPs allows them to be used as internal standards for the normalization of dNTP concentrations. The method can be applied for measuring dNTP and NTP pools in other tissues and organisms.


Asunto(s)
Nucleósidos , Espectrometría de Masas en Tándem , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Nucleótidos , Cromatografía Liquida/métodos , ADN Mitocondrial/genética , Interacciones Hidrofóbicas e Hidrofílicas , Músculos
5.
Cell Metab ; 34(12): 1895-1896, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476929

RESUMEN

A recent publication reported a uniform ∼5- to 6-fold increase in dNTP pools 30 min after exposure to ionizing radiation. Das et al. were not able to reproduce these results. Their data instead agree with earlier publications reporting no increase in dNTP pools in mammalian cells in response to DNA damage.


Asunto(s)
Daño del ADN
6.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35017203

RESUMEN

Eukaryotic cells have evolved a replication stress response that helps to overcome stalled/collapsed replication forks and ensure proper DNA replication. The replication checkpoint protein Mrc1 plays important roles in these processes, although its functional interactions are not fully understood. Here, we show that MRC1 negatively interacts with CHL1, which encodes the helicase protein Chl1, suggesting distinct roles for these factors during the replication stress response. Indeed, whereas Mrc1 is known to facilitate the restart of stalled replication forks, we uncovered that Chl1 controls replication fork rate under replication stress conditions. Chl1 loss leads to increased RNR1 gene expression and dNTP levels at the onset of S phase likely without activating the DNA damage response. This in turn impairs the formation of RPA-coated ssDNA and subsequent checkpoint activation. Thus, the Chl1 helicase affects RPA-dependent checkpoint activation in response to replication fork arrest by ensuring proper intracellular dNTP levels, thereby controlling replication fork progression under replication stress conditions.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Replicación del ADN/genética , Desoxirribonucleótidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Cultivadas , ARN Helicasas DEAD-box , ADN Helicasas , Desoxirribonucleótidos/metabolismo , Humanos
7.
DNA Repair (Amst) ; 110: 103272, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35038632

RESUMEN

DNA replication is performed by replisome proteins, which are highly conserved from yeast to humans. The CMG [Cdc45-Mcm2-7-GINS(Psf1-3, Sld5)] helicase unwinds the double helix to separate the leading and lagging DNA strands, which are replicated by the specialized DNA polymerases epsilon (Pol ε) and delta (Pol δ), respectively. This division of labor was confirmed by both genetic analyses and in vitro studies. Exceptions from this rule were described mainly in cells with impaired catalytic polymerase ε subunit. The central role in the recruitment and establishment of Pol ε on the leading strand is played by the CMG complex assembled on DNA during replication initiation. In this work we analyzed the consequences of impaired functioning of the CMG complex for the division labor between DNA polymerases on the two replicating strands. We showed in vitro that the GINSPsf1-1 complex poorly bound the Psf3 subunit. In vivo, we observed increased rates of L612M Pol δ-specific mutations during replication of the leading DNA strand in psf1-1 cells. These findings indicated that defective functioning of GINS impaired leading strand replication by Pol ε and necessitated involvement of Pol δ in the synthesis on this strand with a possible impact on the distribution of mutations and genomic stability. These are the first results to imply that the division of labor between the two main replicases can be severely influenced by a defective nonpolymerase subunit of the replisome.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Replicación del ADN , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nucleic Acids Res ; 50(3): e18, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34850106

RESUMEN

Information about the cellular concentrations of deoxyribonucleoside triphosphates (dNTPs) is instrumental for mechanistic studies of DNA replication and for understanding diseases caused by defects in dNTP metabolism. The dNTPs are measured by methods based on either HPLC or DNA polymerization. An advantage with the HPLC-based techniques is that the parallel analysis of ribonucleoside triphosphates (rNTPs) can serve as an internal quality control of nucleotide integrity and extraction efficiency. We have developed a Freon-free trichloroacetic acid-based method to extract cellular nucleotides and an isocratic reverse phase HPLC-based technique that is able to separate dNTPs, rNTPs and ADP in a single run. The ability to measure the ADP levels improves the control of nucleotide integrity, and the use of an isocratic elution overcomes the shifting baseline problems in previously developed gradient-based reversed phase protocols for simultaneously measuring dNTPs and rNTPs. An optional DNA-polymerase-dependent step is used for confirmation that the dNTP peaks do not overlap with other components of the extracts, further increasing the reliability of the analysis. The method is compatible with a wide range of biological samples and has a sensitivity better than other UV-based HPLC protocols, closely matching that of mass spectrometry-based detection.


Asunto(s)
Cromatografía Líquida de Alta Presión , Desoxirribonucleótidos , Ribonucleótidos/análisis , Adenosina Difosfato , Cromatografía Líquida de Alta Presión/métodos , ADN , Desoxirribonucleótidos/análisis , Reproducibilidad de los Resultados
10.
Proc Natl Acad Sci U S A ; 117(25): 14306-14313, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513727

RESUMEN

Ribonucleotides (rNMPs) incorporated in the nuclear genome are a well-established threat to genome stability and can result in DNA strand breaks when not removed in a timely manner. However, the presence of a certain level of rNMPs is tolerated in mitochondrial DNA (mtDNA) although aberrant mtDNA rNMP content has been identified in disease models. We investigated the effect of incorporated rNMPs on mtDNA stability over the mouse life span and found that the mtDNA rNMP content increased during early life. The rNMP content of mtDNA varied greatly across different tissues and was defined by the rNTP/dNTP ratio of the tissue. Accordingly, mtDNA rNMPs were nearly absent in SAMHD1-/- mice that have increased dNTP pools. The near absence of rNMPs did not, however, appreciably affect mtDNA copy number or the levels of mtDNA molecules with deletions or strand breaks in aged animals near the end of their life span. The physiological rNMP load therefore does not contribute to the progressive loss of mtDNA quality that occurs as mice age.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Inestabilidad Genómica/fisiología , Ribonucleótidos/genética , Ribonucleótidos/metabolismo , Animales , Daño del ADN , Femenino , Dosificación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos , Proteína 1 que Contiene Dominios SAM y HD/genética
11.
Cell Rep ; 31(6): 107640, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32402273

RESUMEN

The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.


Asunto(s)
Nucleótidos de Desoxiguanina/metabolismo , Nucleósidos de Purina/farmacología , Pirimidinonas/farmacología , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Animales , Resistencia a Antineoplásicos , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Nucleic Acids Res ; 48(8): 4274-4297, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32187369

RESUMEN

Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Desoxirribonucleótidos/metabolismo , Genoma Fúngico , Inestabilidad Genómica , Mutación , Ribonucleasa H/genética , Ribonucleasas/genética , Puntos de Control de la Fase S del Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia
13.
Mol Cell ; 78(3): 396-410.e4, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169162

RESUMEN

The Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1-Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because deoxyribonucleotide triphosphate (dNTP) levels present in G1 phase may not be sufficient to support processive DNA synthesis and impede DNA replication. This activation can be suppressed experimentally by increasing dNTP levels in G1 phase. Moreover, we show that unchallenged cells entering S phase in the absence of Rad53 undergo irreversible fork collapse and mitotic catastrophe. Together, these data indicate that cells use suboptimal dNTP pools to detect the onset of DNA replication and activate the Mec1-Rad53 pathway, which in turn maintains functional forks and triggers dNTP synthesis, allowing the completion of DNA replication.


Asunto(s)
Replicación del ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Desoxirribonucleótidos/genética , Desoxirribonucleótidos/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Mitosis , Proteínas Serina-Treonina Quinasas/genética , Origen de Réplica , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
14.
Nucleic Acids Res ; 48(1): 264-277, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31647103

RESUMEN

The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.


Asunto(s)
Nucleótidos de Desoxiuracil/metabolismo , Ácido Fólico/metabolismo , Genoma Fúngico , Péptido Sintasas/genética , Saccharomyces cerevisiae/genética , Nucleótidos de Timina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Péptido Sintasas/deficiencia , Saccharomyces cerevisiae/metabolismo , Uracilo/metabolismo
15.
Mol Cell ; 76(5): 784-796.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31588022

RESUMEN

Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.


Asunto(s)
Proteínas 14-3-3/metabolismo , Biomarcadores de Tumor/metabolismo , Exorribonucleasas/metabolismo , Mitocondrias/enzimología , Oligonucleótidos/metabolismo , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN Mitocondrial/metabolismo , Proteínas 14-3-3/deficiencia , Proteínas 14-3-3/genética , Animales , Biomarcadores de Tumor/genética , Exorribonucleasas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mitocondrial/genética , Células Sf9 , Spodoptera
16.
J Biol Chem ; 294(44): 15889-15897, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31300555

RESUMEN

The building blocks of DNA, dNTPs, can be produced de novo or can be salvaged from deoxyribonucleosides. However, to what extent the absence of de novo dNTP production can be compensated for by the salvage pathway is unknown. Here, we eliminated de novo dNTP synthesis in the mouse heart and skeletal muscle by inactivating ribonucleotide reductase (RNR), a key enzyme for the de novo production of dNTPs, at embryonic day 13. All other tissues had normal de novo dNTP synthesis and theoretically could supply heart and skeletal muscle with deoxyribonucleosides needed for dNTP production by salvage. We observed that the dNTP and NTP pools in WT postnatal hearts are unexpectedly asymmetric, with unusually high dGTP and GTP levels compared with those in whole mouse embryos or murine cell cultures. We found that RNR inactivation in heart led to strongly decreased dGTP and increased dCTP, dTTP, and dATP pools; aberrant DNA replication; defective expression of muscle-specific proteins; progressive heart abnormalities; disturbance of the cardiac conduction system; and lethality between the second and fourth weeks after birth. We conclude that dNTP salvage cannot substitute for de novo dNTP synthesis in the heart and that cardiomyocytes and myocytes initiate DNA replication despite an inadequate dNTP supply. We discuss the possible reasons for the observed asymmetry in dNTP and NTP pools in WT hearts.


Asunto(s)
Desoxirribonucleótidos/biosíntesis , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Animales , Replicación del ADN , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
17.
FEBS Lett ; 593(13): 1554-1565, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31093968

RESUMEN

The incorporation of ribonucleotides (rNMPs) into DNA during genome replication has gained substantial attention in recent years and has been shown to be a significant source of genomic instability. Studies in yeast and mammals have shown that the two genomes, the nuclear DNA (nDNA) and the mitochondrial DNA (mtDNA), differ with regard to their rNMP content. This is largely due to differences in rNMP repair - whereas rNMPs are efficiently removed from the nuclear genome, mitochondria lack robust mechanisms for removal of single rNMPs incorporated during DNA replication. In this minireview, we describe the processes that determine the frequency of rNMPs in the mitochondrial genome and summarise recent findings regarding the effect of incorporated rNMPs on mtDNA stability and function.


Asunto(s)
ADN Mitocondrial/metabolismo , Ribonucleótidos/metabolismo , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Humanos
18.
PLoS One ; 14(3): e0213350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30917156

RESUMEN

Whole-genome sequencing is a promising approach for human autosomal dominant disease studies. However, the vast number of genetic variants observed by this method constitutes a challenge when trying to identify the causal variants. This is often handled by restricting disease studies to the most damaging variants, e.g. those found in coding regions, and overlooking the remaining genetic variation. Such a biased approach explains in part why the genetic causes of many families with dominantly inherited diseases, in spite of being included in whole-genome sequencing studies, are left unsolved today. Here we explore the use of a geographically matched control population to minimize the number of candidate disease-causing variants without excluding variants based on assumptions on genomic position or functional predictions. To exemplify the benefit of the geographically matched control population we apply a typical disease variant filtering strategy in a family with an autosomal dominant form of colorectal cancer. With the use of the geographically matched control population we end up with 26 candidate variants genome wide. This is in contrast to the tens of thousands of candidates left when only making use of available public variant datasets. The effect of the local control population is dual, it (1) reduces the total number of candidate variants shared between affected individuals, and more importantly (2) increases the rate by which the number of candidate variants are reduced as additional affected family members are included in the filtering strategy. We demonstrate that the application of a geographically matched control population effectively limits the number of candidate disease-causing variants and may provide the means by which variants suitable for functional studies are identified genome wide.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Variación Genética , Secuenciación Completa del Genoma , Estudios de Casos y Controles , Neoplasias Colorrectales/genética , Femenino , Genes Dominantes , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Geografía , Haplotipos , Humanos , Masculino , Linaje , Suecia , Secuenciación Completa del Genoma/estadística & datos numéricos
19.
Nat Commun ; 10(1): 374, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670691

RESUMEN

Alterations in the exonuclease domain of DNA polymerase ε (Polε) cause ultramutated tumors. Severe mutator effects of the most common variant, Polε-P286R, modeled in yeast suggested that its pathogenicity involves yet unknown mechanisms beyond simple proofreading deficiency. We show that, despite producing a catastrophic amount of replication errors in vivo, the yeast Polε-P286R analog retains partial exonuclease activity and is more accurate than exonuclease-dead Polε. The major consequence of the arginine substitution is a dramatically increased DNA polymerase activity. This is manifested as a superior ability to copy synthetic and natural templates, extend mismatched primer termini, and bypass secondary DNA structures. We discuss a model wherein the cancer-associated substitution limits access of the 3'-terminus to the exonuclease site and promotes binding at the polymerase site, thus stimulating polymerization. We propose that the ultramutator effect results from increased polymerase activity amplifying the contribution of Polε errors to the genomic mutation rate.


Asunto(s)
Sustitución de Aminoácidos , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Secuencia de Aminoácidos , Arginina , Secuencia de Bases , ADN/química , Daño del ADN , Enzimas Reparadoras del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Genes Fúngicos , Humanos , Mutagénesis , Mutación , Tasa de Mutación , Fenotipo , Dominios Proteicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Nucleic Acids Res ; 47(8): 3986-3995, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30698744

RESUMEN

The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.


Asunto(s)
ADN Polimerasa II/genética , ADN de Hongos/genética , ADN Polimerasa Dirigida por ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Dominio Catalítico , ADN Polimerasa II/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/deficiencia , Eliminación de Gen , Tasa de Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...