Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512414

RESUMEN

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Asunto(s)
Islas de CpG , Metilación de ADN , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Animales , Ratones , Islas de CpG/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Transgénicos , ADN Metiltransferasa 3A/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/fisiología
2.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076935

RESUMEN

Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods: Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "ßHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.

3.
Cells ; 12(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980244

RESUMEN

The rare SLC30A8 mutation encoding a truncating p.Arg138* variant (R138X) in zinc transporter 8 (ZnT8) is associated with a 65% reduced risk for type 2 diabetes. To determine whether ZnT8 is required for beta cell development and function, we derived human pluripotent stem cells carrying the R138X mutation and differentiated them into insulin-producing cells. We found that human pluripotent stem cells with homozygous or heterozygous R138X mutation and the null (KO) mutation have normal efficiency of differentiation towards insulin-producing cells, but these cells show diffuse granules that lack crystalline zinc-containing insulin granules. Insulin secretion is not compromised in vitro by KO or R138X mutations in human embryonic stem cell-derived beta cells (sc-beta cells). Likewise, the ability of sc-beta cells to secrete insulin and maintain glucose homeostasis after transplantation into mice was comparable across different genotypes. Interestingly, sc-beta cells with the SLC30A8 KO mutation showed increased cytoplasmic zinc, and cells with either KO or R138X mutation were resistant to apoptosis when extracellular zinc was limiting. These findings are consistent with a protective role of zinc in cell death and with the protective role of zinc in T2D.


Asunto(s)
Proteínas de Transporte de Catión , Diabetes Mellitus Tipo 2 , Células Madre Embrionarias Humanas , Transportador 8 de Zinc , Zinc , Animales , Humanos , Ratones , Apoptosis/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/fisiología , Insulina/metabolismo , Mutación con Pérdida de Función , Mutación/genética , Zinc/metabolismo , Transportador 8 de Zinc/genética , Transportador 8 de Zinc/metabolismo
4.
Life Sci ; 316: 121436, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706832

RESUMEN

AIMS: Spatially-organized increases in cytosolic Ca2+ within pancreatic beta cells in the pancreatic islet underlie the stimulation of insulin secretion by high glucose. Recent data have revealed the existence of subpopulations of beta cells including "leaders" which initiate Ca2+ waves. Whether leader cells possess unique molecular features, or localisation, is unknown. MAIN METHODS: High speed confocal Ca2+ imaging was used to identify leader cells and connectivity analysis, running under MATLAB and Python, to identify highly connected "hub" cells. To explore transcriptomic differences between beta cell sub-groups, individual leaders or followers were labelled by photo-activation of the cryptic fluorescent protein PA-mCherry and subjected to single cell RNA sequencing ("Flash-Seq"). KEY FINDINGS: Distinct Ca2+ wave types were identified in individual islets, with leader cells present in 73 % (28 of 38 islets imaged). Scale-free, power law-adherent behaviour was also observed in 29 % of islets, though "hub" cells in these islets did not overlap with leaders. Transcripts differentially expressed (295; padj < 0.05) between leader and follower cells included genes involved in cilium biogenesis and transcriptional regulation. Providing some support for these findings, ADCY6 immunoreactivity tended to be higher in leader than follower cells, whereas cilia number and length tended to be lower in the former. Finally, leader cells were located significantly closer to delta, but not alpha, cells in Euclidian space than were follower cells. SIGNIFICANCE: The existence of both a discrete transcriptome and unique localisation implies a role for these features in defining the specialized function of leaders. These data also raise the possibility that localised signalling between delta and leader cells contributes to the initiation and propagation of islet Ca2+ waves.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Secreción de Insulina , Regulación de la Expresión Génica , Línea Celular , Insulina/metabolismo , Glucosa/metabolismo
5.
Diabetes ; 71(7): 1472-1489, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35472764

RESUMEN

Mitochondrial glucose metabolism is essential for stimulated insulin release from pancreatic ß-cells. Whether mitofusin gene expression, and hence, mitochondrial network integrity, is important for glucose or incretin signaling has not previously been explored. Here, we generated mice with ß-cell-selective, adult-restricted deletion knock-out (dKO) of the mitofusin genes Mfn1 and Mfn2 (ßMfn1/2 dKO). ßMfn1/2-dKO mice displayed elevated fed and fasted glycemia and a more than fivefold decrease in plasma insulin. Mitochondrial length, glucose-induced polarization, ATP synthesis, and cytosolic and mitochondrial Ca2+ increases were all reduced in dKO islets. In contrast, oral glucose tolerance was more modestly affected in ßMfn1/2-dKO mice, and glucagon-like peptide 1 or glucose-dependent insulinotropic peptide receptor agonists largely corrected defective glucose-stimulated insulin secretion through enhanced EPAC-dependent signaling. Correspondingly, cAMP increases in the cytosol, as measured with an Epac-camps-based sensor, were exaggerated in dKO mice. Mitochondrial fusion and fission cycles are thus essential in the ß-cell to maintain normal glucose, but not incretin, sensing. These findings broaden our understanding of the roles of mitofusins in ß-cells, the potential contributions of altered mitochondrial dynamics to diabetes development, and the impact of incretins on this process.


Asunto(s)
GTP Fosfohidrolasas , Glucosa , Incretinas , Células Secretoras de Insulina , Animales , GTP Fosfohidrolasas/genética , Glucosa/metabolismo , Glucosa/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Incretinas/metabolismo , Incretinas/farmacología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados
6.
Diabetes ; 71(7): 1525-1545, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476777

RESUMEN

Impaired pancreatic ß-cell function and insulin secretion are hallmarks of type 2 diabetes. miRNAs are short, noncoding RNAs that silence gene expression vital for the development and function of ß cells. We have previously shown that ß cell-specific deletion of the important energy sensor AMP-activated protein kinase (AMPK) results in increased miR-125b-5p levels. Nevertheless, the function of this miRNA in ß cells is unclear. We hypothesized that miR-125b-5p expression is regulated by glucose and that this miRNA mediates some of the deleterious effects of hyperglycemia in ß cells. Here, we show that islet miR-125b-5p expression is upregulated by glucose in an AMPK-dependent manner and that short-term miR-125b-5p overexpression impairs glucose-stimulated insulin secretion (GSIS) in the mouse insulinoma MIN6 cells and in human islets. An unbiased, high-throughput screen in MIN6 cells identified multiple miR-125b-5p targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Inactivation of miR-125b-5p in the human ß-cell line EndoCß-H1 shortened mitochondria and enhanced GSIS, whereas mice overexpressing miR-125b-5p selectively in ß cells (MIR125B-Tg) were hyperglycemic and glucose intolerant. MIR125B-Tg ß cells contained enlarged lysosomal structures and had reduced insulin content and secretion. Collectively, we identify miR-125b as a glucose-controlled regulator of organelle dynamics that modulates insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , MicroARNs , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo
7.
Diabetologia ; 65(6): 997-1011, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35294578

RESUMEN

AIMS/HYPOTHESIS: Although targeted in extrapancreatic tissues by several drugs used to treat type 2 diabetes, the role of AMP-activated protein kinase (AMPK) in the control of insulin secretion is still debatable. Previous studies have used pharmacological activators of limited selectivity and specificity, and none has examined in primary pancreatic beta cells the actions of the latest generation of highly potent and specific activators that act via the allosteric drug and metabolite (ADaM) site. METHODS: AMPK was activated acutely in islets isolated from C57BL6/J mice, and in an EndoC-ßH3 cell line, using three structurally distinct ADaM site activators (991, PF-06409577 and RA089), with varying selectivity for ß1- vs ß2-containing complexes. Mouse lines expressing a gain-of-function mutation in the γ1 AMPK subunit (D316a) were generated to examine the effects of chronic AMPK stimulation in the whole body, or selectively in the beta cell. RESULTS: Acute (1.5 h) treatment of wild-type mouse islets with 991, PF-06409577 or RA089 robustly stimulated insulin secretion at high glucose concentrations (p<0.01, p<0.05 and p<0.001, respectively), despite a lowering of glucose-induced intracellular free Ca2+ dynamics in response to 991 (AUC, p<0.05) and to RA089 at the highest dose (25 µmol/l) at 5.59 min (p<0.05). Although abolished in the absence of AMPK, the effects of 991 were observed in the absence of the upstream kinase, liver kinase B1, further implicating 'amplifying' pathways. In marked contrast, chronic activation of AMPK, either globally or selectively in the beta cell, achieved using a gain-of-function mutant, impaired insulin release in vivo (p<0.05 at 15 min following i.p. injection of 3 mmol/l glucose) and in vitro (p<0.01 following incubation of islets with 17 mmol/l glucose), and lowered glucose tolerance (p<0.001). CONCLUSIONS/INTERPRETATION: AMPK activation exerts complex, time-dependent effects on insulin secretion. These observations should inform the design and future clinical use of AMPK modulators.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones
9.
Nat Commun ; 12(1): 5165, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453049

RESUMEN

Bariatric surgery improves both insulin sensitivity and secretion and can induce diabetes remission. However, the mechanisms and time courses of these changes, particularly the impact on ß cell function, are difficult to monitor directly. In this study, we investigated the effect of Vertical Sleeve Gastrectomy (VSG) on ß cell function in vivo by imaging Ca2+ dynamics in islets engrafted into the anterior eye chamber. Mirroring its clinical utility, VSG in mice results in significantly improved glucose tolerance, and enhanced insulin secretion. We reveal that these benefits are underpinned by augmented ß cell function and coordinated activity across the islet. These effects involve changes in circulating GLP-1 levels which may act both directly and indirectly on the ß cell, in the latter case through changes in body weight. Thus, bariatric surgery leads to time-dependent increases in ß cell function and intra-islet connectivity which are likely to contribute to diabetes remission.


Asunto(s)
Calcio/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/cirugía , Células Secretoras de Insulina/metabolismo , Animales , Cirugía Bariátrica , Glucemia/metabolismo , Diabetes Mellitus/diagnóstico por imagen , Femenino , Gastrectomía , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Insulina/metabolismo , Microscopía Intravital , Masculino , Ratones , Ratones Endogámicos C57BL , Estómago/cirugía
10.
FEBS Lett ; 595(13): 1782-1796, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33960419

RESUMEN

Sorcin is a calcium-binding protein involved in maintaining endoplasmic reticulum (ER) Ca2+ stores. We have previously shown that overexpressing sorcin under the rat insulin promoter was protective against high-fat diet-induced pancreatic beta-cell dysfunction in vivo. Activating transcription factor 6 (ATF6) is a key mediator of the unfolded protein response (UPR) that provides cellular protection during the progression of ER stress. Here, using nonexcitable HEK293 cells, we show that sorcin overexpression increased ATF6 signalling, whereas sorcin knock out caused a reduction in ATF6 transcriptional activity and increased ER stress. Altogether, our data suggest that sorcin downregulation during lipotoxic stress may prevent full ATF6 activation and a normal UPR during the progression of obesity and insulin resistance.


Asunto(s)
Factor de Transcripción Activador 6/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Técnicas de Inactivación de Genes/métodos , Obesidad/genética , Palmitatos/efectos adversos , Animales , Calcio/metabolismo , Células Cultivadas , Progresión de la Enfermedad , Regulación hacia Abajo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Resistencia a la Insulina , Ratones , Obesidad/metabolismo , Transducción de Señal , Activación Transcripcional/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
11.
Mol Metab ; 53: 101248, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33989778

RESUMEN

OBJECTIVE: ß-cell dedifferentiation has been revealed as a pathological mechanism underlying pancreatic dysfunction in diabetes. We previously showed that increased miR-7 levels trigger ß-cell dedifferentiation and diabetes. We used ß-cell-specific miR-7 overexpressing mice (Tg7) to test the hypothesis that loss of ß-cell identity triggered by miR-7 overexpression alters islet gene expression and islet microenvironment in diabetes. METHODS: We performed bulk and single-cell RNA sequencing (RNA-seq) in islets obtained from ß-cell-specific miR-7 overexpressing mice (Tg7). We carried out loss- and gain-of-function experiments in MIN6 and EndoC-bH1 cell lines. We analysed previously published mouse and human T2D data sets. RESULTS: Bulk RNA-seq revealed that ß-cell dedifferentiation is associated with the induction of genes associated with epithelial-to-mesenchymal transition (EMT) in prediabetic (2-week-old) and diabetic (12-week-old) Tg7 mice. Single-cell RNA-seq (scRNA-seq) indicated that this EMT signature is enriched specifically in ß-cells. These molecular changes are associated with a weakening of ß-cell: ß-cell contacts, increased extracellular matrix (ECM) deposition, and TGFß-dependent islet fibrosis. We found that the mesenchymal reprogramming of ß-cells is explained in part by the downregulation of Pdx1 and its inability to regulate a myriad of epithelial-specific genes expressed in ß-cells. Notable among genes transactivated by Pdx1 is Ovol2, which encodes a transcriptional repressor of the EMT transcription factor Zeb2. Following compromised ß-cell identity, the reduction in Pdx1 gene expression causes a decrease in Ovol2 protein, triggering mesenchymal reprogramming of ß-cells through the induction of Zeb2. We provided evidence that EMT signalling associated with the upregulation of Zeb2 expression is a molecular feature of islets in T2D subjects. CONCLUSIONS: Our study indicates that miR-7-mediated ß-cell dedifferentiation induces EMT signalling and a chronic response to tissue injury, which alters the islet microenvironment and predisposes to fibrosis. This research suggests that regulators of EMT signalling may represent novel therapeutic targets for treating ß-cell dysfunction and fibrosis in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Femenino , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia de ARN , Transactivadores/genética , Factores de Transcripción/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
12.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498234

RESUMEN

Diabetes mellitus now affects more than 400 million individuals worldwide, with significant impacts on the lives of those affected and associated socio-economic costs. Although defects in insulin secretion underlie all forms of the disease, the molecular mechanisms which drive them are still poorly understood. Subsets of specialised beta cells have, in recent years, been suggested to play critical roles in "pacing" overall islet activity. The molecular nature of these cells, the means through which their identity is established and the changes which may contribute to their functional demise and "loss of influence" in both type 1 and type 2 diabetes are largely unknown. Genomic imprinting involves the selective silencing of one of the two parental alleles through DNA methylation and modified imprinted gene expression is involved in a number of diseases. Loss of expression, or loss of imprinting, can be shown in mouse models to lead to defects in beta cell function and abnormal insulin secretion. In the present review we survey the evidence that altered expression of imprinted genes contribute to loss of beta cell function, the importance of beta cell heterogeneity in normal and disease states, and hypothesise whether there is a direct link between the two.


Asunto(s)
Diabetes Mellitus/genética , Impresión Genómica , Células Secretoras de Insulina/metabolismo , Animales , Diabetes Mellitus/metabolismo , Humanos , Secreción de Insulina , Análisis de la Célula Individual , Transcriptoma
13.
Diabetologia ; 64(4): 850-864, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33492421

RESUMEN

AIMS/HYPOTHESIS: Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B. METHODS: CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry. RESULTS: Systemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca2+. Binding partners for both included secretory-granule-localised PTPRN2/phogrin. CONCLUSIONS/INTERPRETATION: Our studies suggest that C2cd4b may act centrally in the pituitary to influence sex-dependent circuits that control pancreatic beta cell function and glucose tolerance in rodents. However, the absence of sexual dimorphism in the impact of diabetes risk variants argues for additional roles for C2CD4A or VPS13C in the control of glucose homeostasis in humans. DATA AVAILABILITY: The datasets generated and/or analysed during the current study are available in the Biorxiv repository ( www.biorxiv.org/content/10.1101/2020.05.18.099200v1 ). RNA-Seq (GSE152576) and proteomics (PXD021597) data have been deposited to GEO ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152576 ) and ProteomeXchange ( www.ebi.ac.uk/pride/archive/projects/PXD021597 ) repositories, respectively.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Homeostasis/genética , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Biomarcadores/sangre , Glucemia/genética , Femenino , Hormona Folículo Estimulante/sangre , Genotipo , Humanos , Insulina/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Hipófisis/metabolismo , Caracteres Sexuales , Aumento de Peso , Pez Cebra/sangre , Pez Cebra/genética , Proteínas de Pez Cebra/sangre , Proteínas de Pez Cebra/genética
14.
Nat Genet ; 51(11): 1596-1606, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31676859

RESUMEN

A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived ß-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human ß cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevención & control , Glucosa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Transportador 8 de Zinc/metabolismo , Adolescente , Adulto , Anciano , Diabetes Mellitus Tipo 2/patología , Femenino , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/patología , Islotes Pancreáticos/patología , Masculino , Persona de Mediana Edad , Adulto Joven , Transportador 8 de Zinc/genética
15.
Nat Immunol ; 20(3): 350-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718914

RESUMEN

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Asunto(s)
Agammaglobulinemia/inmunología , Linfocitos B/inmunología , Proteínas de Transporte de Catión/inmunología , Zinc/inmunología , Agammaglobulinemia/genética , Agammaglobulinemia/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Preescolar , Citosol/inmunología , Citosol/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Linaje , Zinc/metabolismo
16.
Nat Rev Endocrinol ; 14(12): 694-704, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30310153

RESUMEN

Findings from the past 10 years have placed the glucagon-secreting pancreatic α-cell centre stage in the development of diabetes mellitus, a disease affecting almost one in every ten adults worldwide. Glucagon secretion is reduced in patients with type 1 diabetes mellitus, increasing the risk of insulin-induced hypoglycaemia, but is enhanced in type 2 diabetes mellitus, exacerbating the effects of diminished insulin release and action on blood levels of glucose. A better understanding of the mechanisms underlying these changes is therefore an important goal. RNA sequencing reveals that, despite their opposing roles in the control of blood levels of glucose, α-cells and ß-cells have remarkably similar patterns of gene expression. This similarity might explain the fairly facile interconversion between these cells and the ability of the α-cell compartment to serve as a source of new ß-cells in models of extreme ß-cell loss that mimic type 1 diabetes mellitus. Emerging data suggest that GABA might facilitate this interconversion, whereas the amino acid glutamine serves as a liver-derived factor to promote α-cell replication and maintenance of α-cell mass. Here, we survey these developments and their therapeutic implications for patients with diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Insulina/metabolismo , Masculino , Rol , Sensibilidad y Especificidad
17.
Proc Natl Acad Sci U S A ; 115(32): E7642-E7649, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038024

RESUMEN

SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In ß-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic ß-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced ß-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of ß-cells to secrete insulin under hyperglycemic conditions.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transportador 8 de Zinc/genética , Alelos , Animales , Glucemia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Hiperglucemia/sangre , Hiperglucemia/inducido químicamente , Hiperglucemia/metabolismo , Secreción de Insulina , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/farmacología , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/metabolismo , Transportador 8 de Zinc/metabolismo
18.
J Clin Invest ; 128(8): 3369-3381, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29864031

RESUMEN

Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in ß cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess. In contrast, we report no evidence for any feeding or body weight phenotypes in global Nnat-null mice. At the molecular level neuronatin augments insulin signal peptide cleavage by binding to the signal peptidase complex and facilitates translocation of the nascent preprohormone. Loss of neuronatin expression in ß cells therefore reduces insulin content and blunts glucose-stimulated insulin secretion. Nnat expression, in turn, is glucose-regulated. This mechanism therefore represents a novel site of nutrient-sensitive control of ß cell function and whole-animal glucose homeostasis. These data also suggest a potential wider role for Nnat in the regulation of metabolism through the modulation of peptide processing events.


Asunto(s)
Regulación de la Expresión Génica , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Glucosa/genética , Glucosa/metabolismo , Insulina/genética , Células Secretoras de Insulina/citología , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
19.
Nat Commun ; 9(1): 1602, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29686402

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) activation promotes insulin secretion from pancreatic beta cells, causes weight loss, and is an important pharmacological target in type 2 diabetes (T2D). Like other G protein-coupled receptors, the GLP-1R undergoes agonist-mediated endocytosis, but the functional and therapeutic consequences of modulating GLP-1R endocytic trafficking have not been clearly defined. Here, we investigate a series of biased GLP-1R agonists with variable propensities for GLP-1R internalization and recycling. Compared to a panel of FDA-approved GLP-1 mimetics, compounds that retain GLP-1R at the plasma membrane produce greater long-term insulin release, which is dependent on a reduction in ß-arrestin recruitment and faster agonist dissociation rates. Such molecules elicit glycemic benefits in mice without concomitant increases in signs of nausea, a common side effect of GLP-1 therapies. Our study identifies a set of agents with specific GLP-1R trafficking profiles and the potential for greater efficacy and tolerability as T2D treatments.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/farmacología , Insulina/metabolismo , Animales , Glucemia/efectos de los fármacos , Células CHO , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cricetulus , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Endocitosis/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Náusea/inducido químicamente , Náusea/epidemiología , Cultivo Primario de Células , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Resultado del Tratamiento
20.
Metallomics ; 10(2): 229-239, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29431830

RESUMEN

Zinc homeostasis is essential for normal cellular function, and defects in this process are associated with a number of diseases including type 2 diabetes (T2D), neurological disorders and cardiovascular disease. Thus, variants in the SLC30A8 gene, encoding the vesicular/granular zinc transporter ZnT8, are associated with altered insulin release and increased T2D risk while the zinc importer ZIP12 is implicated in pulmonary hypertension. In light of these, and findings in other diseases, recent efforts have focused on the development of refined sensors for intracellular free zinc ions that can be targeted to subcellular regions including the cytosol, endoplasmic reticulum (ER), secretory granules, Golgi apparatus, nucleus and the mitochondria. Here, we discuss recent advances in Zn2+ probe engineering and their applications to the measurement of labile subcellular zinc pools in different cell types.


Asunto(s)
Técnicas Biosensibles , Proteínas de Transporte de Catión/metabolismo , Zinc/análisis , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Humanos , Vesículas Secretoras/metabolismo , Fracciones Subcelulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA