Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(8): 3382-3388, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38359900

RESUMEN

Metabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms. Metabolic network modeling is commonly used to frame metabolomics data in the context of a broader biological system. However, network modeling of poorly characterized nonmodel organisms remains challenging due to gene homology mismatches which lead to network architecture errors. To address this, we developed the Metabolic Interactive Nodular Network for Omics (MINNO), a web-based mapping tool that uses empirical metabolomics data to refine metabolic networks. MINNO allows users to create, modify, and interact with metabolic pathway visualizations for thousands of organisms, in both individual and multispecies contexts. Herein, we illustrate the use of MINNO in elucidating the metabolic networks of understudied species, such as those of the Borrelia genus, which cause Lyme and relapsing fever diseases. Using a hybrid genomics-metabolomics modeling approach, we constructed species-specific metabolic networks for threeBorrelia species. Using these empirically refined networks, we were able to metabolically differentiate these species via their nucleotide metabolism, which cannot be predicted from genomic networks. Additionally, using MINNO, we identified 18 missing reactions from the KEGG database, of which nine were supported by the primary literature. These examples illustrate the use of metabolomics for the empirical refining of genetically constructed networks and show how MINNO can be used to study nonmodel organisms.


Asunto(s)
Metabolómica , Programas Informáticos , Genómica , Genoma , Redes y Vías Metabólicas
2.
bioRxiv ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37503268

RESUMEN

Metabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms, and metabolic network modeling is commonly used to frame results in the context of a broader homeostatic system. However, network modeling of poorly characterized, non-model organisms remains challenging due to gene homology mismatches. To address this challenge, we developed Metabolic Interactive Nodular Network for Omics (MINNO), a web-based mapping tool that takes in empirical metabolomics data to refine metabolic networks for both model and unusual organisms. MINNO allows users to create and modify interactive metabolic pathway visualizations for thousands of organisms, in both individual and multi-species contexts. Herein, we demonstrate an important application of MINNO in elucidating the metabolic networks of understudied species, such as those of the Borrelia genus, which cause Lyme disease and relapsing fever. Using a hybrid genomics-metabolomics modeling approach, we constructed species-specific metabolic networks for three Borrelia species. Using these empirically refined networks, we were able to metabolically differentiate these genetically similar species via their nucleotide and nicotinate metabolic pathways that cannot be predicted from genomic networks. These examples illustrate the use of metabolomics for the empirical refining of genetically constructed networks and show how MINNO can be used to study non-model organisms.

3.
Microbiol Spectr ; 11(4): e0125423, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37255427

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi sensu lato can cause a multitude of clinical manifestations because of its ability to disseminate into any organ system via migration through soft tissue, the lymphatic system, and the circulatory system. The latter is believed to constitute the predominant pathway for dissemination to distal sites from the inoculating tick bite. In spite of its importance, the hematogenous dissemination process remains largely uncharacterized, particularly due to difficulties studying this process in a living host and the lack of an in vitro system that recapitulates animal infection. In the current work, we provide the first information regarding the stage of the vascular transmigration pathway where three important adhesins function during invasion of mouse knee joint peripheral tissue from postcapillary venules. Using intravital imaging coupled with genetic experiments employing sequential double infection, we show a complex temporal choreography of P66, decorin binding proteins (DbpA/B), and outer surface protein C (OspC) at discrete steps along the pathway of vascular escape, underscoring the importance of B. burgdorferi adhesins in hematogenous dissemination in the mouse knee joint and the complexity of vascular transmigration by a disseminating pathogen. IMPORTANCE Lyme disease is caused by the spirochete Borrelia burgdorferi, which is transmitted by a bite from an infected tick. Disease development involves a complex series of host-pathogen interactions as well as dissemination of the infecting organisms to sites distal to the original tick bite. The predominant pathway for this is believed to be hematogenous dissemination. The mechanism by which the spirochetes escape circulation is unknown. Here, using intravital microscopy, where the Lyme spirochete can be observed in a living mouse, we have studied the stage in the vascular escape process where each of three surface adhesins functions to facilitate escape of the spirochete from postcapillary venules to invade mouse knee joint peripheral tissue. A complex pattern of involvement at various locations in the multistage process is described using a unique experimental approach that is applicable to other disseminating pathogens.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Enfermedad de Lyme , Mordeduras de Garrapatas , Ratones , Animales , Borrelia burgdorferi/genética , Adhesinas Bacterianas/metabolismo
4.
Front Immunol ; 14: 1020134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006299

RESUMEN

Introduction: The incidence of Lyme disease (LD) in Canada and the United States has risen over the last decade, nearing 480,000 cases each year. Borrelia burgdorferi sensu lato, the causative agent of LD, is transmitted to humans through the bite of an infected tick, resulting in flu-like symptoms and often a characteristic bull's-eye rash. In more severe cases, disseminated bacterial infection can cause arthritis, carditis and neurological impairments. Currently, no vaccine is available for the prevention of LD in humans. Methods: In this study, we developed a lipid nanoparticle (LNP)-encapsulated DNA vaccine encoding outer surface protein C type A (OspC-type A) of B. burgdorferi. Results: Vaccination of C3H/HeN mice with two doses of the candidate vaccine induced significant OspC-type A-specific antibody titres and borreliacidal activity. Analysis of the bacterial burden following needle challenge with B. burgdorferi (OspC-type A) revealed that the candidate vaccine afforded effective protection against homologous infection across a range of susceptible tissues. Notably, vaccinated mice were protected against carditis and lymphadenopathy associated with Lyme borreliosis. Discussion: Overall, the results of this study provide support for the use of a DNA-LNP platform for the development of LD vaccines.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Miocarditis , Vacunas de ADN , Humanos , Ratones , Animales , Vacunas Bacterianas , Ratones Endogámicos C3H , ADN
5.
Front Microbiol ; 13: 888494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663861

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1-2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.

6.
PLoS Pathog ; 18(5): e1010511, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605029

RESUMEN

Hematogenous dissemination is a critical step in the evolution of local infection to systemic disease. The Lyme disease (LD) spirochete, which efficiently disseminates to multiple tissues, has provided a model for this process, in particular for the key early event of pathogen adhesion to the host vasculature. This occurs under shear force mediated by interactions between bacterial adhesins and mammalian cell-surface proteins or extracellular matrix (ECM). Using real-time intravital imaging of the Lyme spirochete in living mice, we previously identified BBK32 as the first LD spirochetal adhesin demonstrated to mediate early vascular adhesion in a living mouse; however, deletion of bbk32 resulted in loss of only about half of the early interactions, suggesting the existence of at least one other adhesin (adhesin-X) that promotes early vascular interactions. VlsE, a surface lipoprotein, was identified long ago by its capacity to undergo rapid antigenic variation, is upregulated in the mammalian host and required for persistent infection in immunocompetent mice. In immunodeficient mice, VlsE shares functional overlap with OspC, a multi-functional protein that displays dermatan sulfate-binding activity and is required for joint invasion and colonization. In this research, using biochemical and genetic approaches as well as intravital imaging, we have identified VlsE as adhesin-X; it is a dermatan sulfate (DS) adhesin that efficiently promotes transient adhesion to the microvasculature under shear force via its DS binding pocket. Intravenous inoculation of mice with a low-passage infectious B. burgdorferi strain lacking both bbk32 and vlsE almost completely eliminated transient microvascular interactions. Comparative analysis of binding parameters of VlsE, BBK32 and OspC provides a possible explanation why these three DS adhesins display different functionality in terms of their ability to promote early microvascular interactions.


Asunto(s)
Adhesinas Bacterianas , Variación Antigénica , Antígenos Bacterianos , Proteínas Bacterianas , Borrelia burgdorferi , Lipoproteínas , Enfermedad de Lyme , Microvasos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Adhesión Bacteriana/genética , Adhesión Bacteriana/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Dermatán Sulfato/inmunología , Lipoproteínas/genética , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Mamíferos , Ratones , Microvasos/inmunología , Microvasos/microbiología , Resistencia al Corte
7.
Mol Microbiol ; 116(2): 498-515, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33891779

RESUMEN

Lyme disease is the most common tick-transmitted disease in the northern hemisphere and is caused by the spirochete Borrelia burgdorferi and related Borrelia species. The constellation of symptoms attributable to this malady results from vascular dissemination of B. burgdorferi throughout the body to invade various tissue types. However, little is known about the mechanism by which the spirochetes can breach the blood vessel wall to reach distant tissues. We have studied this process by direct observation of spirochetes in the microvasculature of living mice using multi-laser spinning-disk intravital microscopy. Our results show that in our experimental system, instead of phagocytizing B. burgdorferi, host neutrophils are involved in the production of specific cytokines that activate the endothelium and potentiate B. burgdorferi escape into the surrounding tissue. Spirochete escape is not induced by paracellular permeability and appears to occur via a transcellular pathway. Neutrophil repurposing to promote bacterial extravasation represents a new and innovative pathogenic strategy.


Asunto(s)
Borrelia burgdorferi/inmunología , Citocinas/inmunología , Enfermedad de Lyme/patología , Microvasos/fisiología , Neutrófilos/inmunología , Migración Transendotelial y Transepitelial/inmunología , Animales , Citocinas/metabolismo , Endotelio Vascular/fisiología , Femenino , Enfermedad de Lyme/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C
8.
Curr Issues Mol Biol ; 42: 385-408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33310914

RESUMEN

Being able to vizualize a pathogen at a site of interaction with a host is an aesthetically appealing idea and the resulting images can be both informative as well as enjoyable to view. Moreover, the approaches used to derive these images can be powerful in terms of offering data unobtainable by other methods. In this article, we review three primary modalities for live imaging Borrelia spirochetes: whole animal imaging, intravital microscopy and live cell imaging. Each method has strengths and weaknesses, which we review, as well as specific purposes for which they are optimally utilized. Live imaging borriliae is a relatively recent development and there was a need of a review to cover the area. Here, in addition to the methods themselves, we also review areas of spirochete biology that have been significantly impacted by live imaging and present a collection of images associated with the forward motion in the field driven by imaging studies.


Asunto(s)
Borrelia/citología , Microscopía , Animales , Fenómenos Fisiológicos Bacterianos , Borrelia/fisiología , Humanos , Microscopía/métodos , Imagen Óptica/métodos
9.
PLoS Pathog ; 16(5): e1008516, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32413091

RESUMEN

Lyme disease, caused by Borrelia burgdorferi, B. afzelii and B. garinii, is a chronic, multi-systemic infection and the spectrum of tissues affected can vary with the Lyme disease strain. For example, whereas B. garinii infection is associated with neurologic manifestations, B. burgdorferi infection is associated with arthritis. The basis for tissue tropism is poorly understood, but has been long hypothesized to involve strain-specific interactions with host components in the target tissue. OspC (outer surface protein C) is a highly variable outer surface protein required for infectivity, and sequence differences in OspC are associated with variation in tissue invasiveness, but whether OspC directly influences tropism is unknown. We found that OspC binds to the extracellular matrix (ECM) components fibronectin and/or dermatan sulfate in an OspC variant-dependent manner. Murine infection by isogenic B. burgdorferi strains differing only in their ospC coding region revealed that two OspC variants capable of binding dermatan sulfate promoted colonization of all tissues tested, including joints. However, an isogenic strain producing OspC from B. garinii strain PBr, which binds fibronectin but not dermatan sulfate, colonized the skin, heart and bladder, but not joints. Moreover, a strain producing an OspC altered to recognize neither fibronectin nor dermatan sulfate displayed dramatically reduced levels of tissue colonization that were indistinguishable from a strain entirely deficient in OspC. Finally, intravital microscopy revealed that this OspC mutant, in contrast to a strain producing wild type OspC, was defective in promoting joint invasion by B. burgdorferi in living mice. We conclude that OspC functions as an ECM-binding adhesin that is required for joint invasion, and that variation in OspC sequence contributes to strain-specific differences in tissue tropism displayed among Lyme disease spirochetes.


Asunto(s)
Borrelia burgdorferi/metabolismo , Dermatán Sulfato/metabolismo , Matriz Extracelular/metabolismo , Artropatías/metabolismo , Articulaciones/metabolismo , Enfermedad de Lyme/metabolismo , Animales , Antígenos Bacterianos , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidad , Dermatán Sulfato/genética , Matriz Extracelular/genética , Matriz Extracelular/microbiología , Matriz Extracelular/patología , Femenino , Fibronectinas/genética , Fibronectinas/metabolismo , Artropatías/genética , Artropatías/microbiología , Artropatías/patología , Articulaciones/microbiología , Articulaciones/patología , Enfermedad de Lyme/genética , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/patología , Ratones , Ratones SCID , Mutación , Especificidad de Órganos
10.
J Biol Chem ; 295(2): 301-313, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31753921

RESUMEN

Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.


Asunto(s)
Variación Antigénica , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/inmunología , Lipoproteínas/inmunología , Enfermedad de Lyme/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Borrelia burgdorferi/química , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiología , Sitios Genéticos , Interacciones Huésped-Patógeno , Humanos , Inmunidad , Lipoproteínas/química , Lipoproteínas/genética , Modelos Moleculares , Mutación
11.
Mol Microbiol ; 111(3): 750-763, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30580501

RESUMEN

Borrelia burgdorferi is a causative agent of Lyme disease and establishes long-term infection in mammalian hosts. Persistence is promoted by the VlsE antigenic variation system, which generates combinatorial diversity of VlsE through unidirectional, segmental gene conversion from an array of silent cassettes. Here we explore the variants generated by the vls system of strain JD1, which has divergent sequence and structural elements from the type strain B31, the only B. burgdorferi strain in which recombinational switching at vlsE has been studied in detail. We first completed the sequencing of the vls region in JD1, uncovering a previously unreported 114 bp inverted repeat sequence upstream of vlsE. A five-week infection of WT and SCID mice was used for PacBio long read sequencing along with our recently developed VAST pipeline to analyze recombinational switching at vlsE from 40,000 sequences comprising 226,000 inferred recombination events. We show that antigenic variation in B31 and JD1 is highly similar, despite the lack of 17 bp direct repeats in JD1, a somewhat different arrangement of the silent cassettes, divergent inverted repeat sequences and general divergence in the vls sequences. We also present data that strongly suggest that dimerization is required for in vivo functionality of VlsE.


Asunto(s)
Variación Antigénica , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Lipoproteínas/genética , Lipoproteínas/inmunología , Animales , Modelos Animales de Enfermedad , Enfermedad de Lyme/microbiología , Ratones Endogámicos C3H , Ratones SCID , Multimerización de Proteína , Recombinación Genética , Análisis de Secuencia de ADN
12.
Mol Microbiol ; 109(5): 710-721, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29995993

RESUMEN

Borrelia burgdorferi evades the host immune system by switching the surface antigen. VlsE, in a process known as antigenic variation. The DNA mechanisms and genetic elements present on the vls locus that participate in the switching process remain to be elucidated. Manipulating the vls locus has been difficult due to its instability on Escherichia coli plasmids. In this study, we generated for the first time a mini-vls system composed of a single silent vlsE variable region (silent cassette 2) through the vlsE gene by performing some cloning steps directly in a highly transformable B. burgdorferi strain. Variants of the mini system were constructed with or without the long inverted repeat (IR) located upstream of vlsE and on both circular and linear plasmids to investigate the importance of the IR and plasmid topology on recombinational switching at vlsE. Amplicon sequencing using PacBio long read technology and analysis of the data with our recently reported pipeline and VAST software showed that the system undergoes switching in mice in both linear and circular versions and that the presence of the hairpin does not seem to be crucial in the linear version, however it is required when the topology is circular.


Asunto(s)
Variación Antigénica , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Borrelia burgdorferi/inmunología , Secuencias Invertidas Repetidas/genética , Lipoproteínas/genética , Enfermedad de Lyme/microbiología , Plásmidos/genética , Animales , Borrelia burgdorferi/genética , Cartilla de ADN , Sitios Genéticos/genética , Vectores Genéticos , Genoma Bacteriano/genética , Enfermedad de Lyme/sangre , Ratones , Ratones SCID
14.
Cell Rep ; 23(9): 2595-2605, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29847791

RESUMEN

The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions.


Asunto(s)
Variación Antigénica/inmunología , Borrelia burgdorferi/inmunología , Cambio de Clase de Inmunoglobulina/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Recombinación Genética/genética , Animales , Sitios Genéticos , Mutación INDEL/genética , Ratones SCID , Polimorfismo de Nucleótido Simple/genética , Homología de Secuencia de Aminoácido , Moldes Genéticos
15.
Mol Microbiol ; 107(1): 104-115, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29105221

RESUMEN

The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.


Asunto(s)
Variación Antigénica/genética , Borrelia burgdorferi/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Antígenos de Superficie/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Conversión Génica , Variación Genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/metabolismo , Ratones , Ratones SCID , Recombinación Genética
16.
PLoS Pathog ; 11(12): e1005333, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26684456

RESUMEN

Vascular extravasation, a key step in systemic infection by hematogenous microbial pathogens, is poorly understood, but has been postulated to encompass features similar to vascular transmigration by leukocytes. The Lyme disease spirochete can cause a variety of clinical manifestations, including arthritis, upon hematogenous dissemination. This pathogen encodes numerous surface adhesive proteins (adhesins) that may promote extravasation, but none have yet been implicated in this process. In this work we report the novel use of intravital microscopy of the peripheral knee vasculature to study transmigration of the Lyme spirochete in living Cd1d-/-mice. In the absence of iNKT cells, major immune modulators in the mouse joint, spirochetes that have extravasated into joint-proximal tissue remain in the local milieu and can be enumerated accurately. We show that BBK32, a fibronectin and glycosaminoglycan adhesin of B. burgdorferi involved in early steps of endothelial adhesion, is not required for extravasation from the peripheral knee vasculature. In contrast, almost no transmigration occurs in the absence of P66, an outer membrane protein that has porin and integrin adhesin functions. Importantly, P66 mutants specifically defective in integrin binding were incapable of promoting extravasation. P66 itself does not promote detectable microvascular interactions, suggesting that vascular adhesion of B. burgdorferi mediated by other adhesins, sets the stage for P66-integrin interactions leading to transmigration. Although integrin-binding proteins with diverse functions are encoded by a variety of bacterial pathogens, P66 is the first to have a documented and direct role in vascular transmigration. The emerging picture of vascular escape by the Lyme spirochete shows similarities, but distinct differences from leukocyte transmigration.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/patogenicidad , Enfermedad de Lyme/metabolismo , Porinas/metabolismo , Migración Transendotelial y Transepitelial/fisiología , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/fisiología , Microscopía Intravital , Enfermedad de Lyme/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Microscopía Confocal
17.
Proc Natl Acad Sci U S A ; 111(38): 13936-41, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25205813

RESUMEN

CXCR6-GFP(+) cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60-70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints.


Asunto(s)
Borrelia burgdorferi/inmunología , Inmunidad Celular , Artropatías/inmunología , Articulaciones/inmunología , Enfermedad de Lyme/inmunología , Células T Asesinas Naturales/inmunología , Animales , Granzimas/genética , Granzimas/inmunología , Humanos , Artropatías/genética , Artropatías/microbiología , Artropatías/patología , Articulaciones/microbiología , Articulaciones/patología , Hígado/inmunología , Hígado/patología , Enfermedad de Lyme/genética , Enfermedad de Lyme/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Células T Asesinas Naturales/patología , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Bazo/inmunología , Bazo/patología
18.
J Bacteriol ; 196(13): 2396-404, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24748617

RESUMEN

Borrelia species are unique in the bacterial world in possessing segmented genomes which sometimes contain over 20 genetic elements. Most elements are linear and contain covalently closed hairpin ends requiring a specialized process, telomere resolution, for their generation. Hairpin telomere resolution is mediated by the telomere resolvase, ResT. Although the process has been studied extensively in vitro, the essential nature of the resT gene has precluded biological studies to further probe the role of ResT. In this work, we have generated a B. burgdorferi strain that carries an isopropyl-ß-d-thiogalactopyranoside (IPTG)-inducible resT gene controlled by a tightly regulated promoter. ResT is expressed in this strain at ~14,000 monomers per cell, similar to the ~15,000 monomers observed for the parental strain. We demonstrate ResT depletion with a half-life of 16 h upon IPTG washout. ResT depletion resulted in arrested growth 48 h after washout. Interestingly, not all spirochetes died after ResT washout, and at least 15% remained quiescent and could be resuscitated even at 2 weeks postwashout. Significant levels of DNA synthesis were not observed upon growth arrest, suggesting that ResT might interact directly or indirectly with factors controlling the initiation or elongation of DNA synthesis. Analysis of the linear plasmids lp17 and lp28-2 showed that the linear forms of these plasmids began to disappear and be replaced by higher-molecular-weight forms by 24 h post-IPTG washout. Treatment of DNA from the ResT-depleted strain with ResT in vitro revealed the presence of replicated telomeres expected in replication intermediates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Endodesoxirribonucleasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , ADN Bacteriano , Endodesoxirribonucleasas/genética , Mutación
19.
Microbiol Spectr ; 2(6)2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26104454

RESUMEN

Covalently closed hairpin ends, also known as hairpin telomeres, provide an unusual solution to the end replication problem. The hairpin telomeres are generated from replication intermediates by a process known as telomere resolution. This is a DNA breakage and reunion reaction promoted by hairpin telomere resolvases (also referred to as protelomerases) found in a limited number of phage and bacteria. The reaction promoted by these enzymes is a chemically isoenergetic two-step transesterification without a requirement for divalent metal ions or high-energy cofactors and uses an active site and mechanism similar to that for type IB topoisomerases and tyrosine recombinases. The small number of unrelated telomere resolvases characterized to date all contain a central, catalytic core domain with the active site, but in addition carry variable C- and N-terminal domains with different functions. Similarities and differences in the structure and function of the telomere resolvases are discussed. Of particular interest are the properties of the Borrelia telomere resolvases, which have been studied most extensively at the biochemical level and appear to play a role in shaping the unusual segmented genomes in these organisms and, perhaps, to play a role in recombinational events.


Asunto(s)
Bacterias/enzimología , Bacterias/genética , Bacteriófagos/enzimología , Bacteriófagos/genética , Recombinasas/metabolismo , Telómero/metabolismo , Dominio Catalítico , Variación Genética , Recombinasas/genética
20.
PLoS Pathog ; 9(12): e1003841, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367266

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi must differentially express genes and proteins in order to survive in and transit between its tick vector and vertebrate reservoir. The putative DEAH-box RNA helicase, HrpA, has been recently identified as an addition to the spirochete's global regulatory machinery; using proteomic methods, we demonstrated that HrpA modulates the expression of at least 180 proteins. Although most bacteria encode an HrpA helicase, RNA helicase activity has never been demonstrated for HrpAs and the literature contains little information on the contribution of this protein to bacterial physiology or pathogenicity. In this work, we report that B. burgdorferi HrpA has RNA-stimulated ATPase activity and RNA helicase activity and that this enzyme is essential for both mammalian infectivity by syringe inoculation and tick transmission. Reduced infectivity of strains carrying mutations in the ATPase and RNA binding motif mutants suggests that full virulence expression requires both ATPase and coupled helicase activity. Microarray profiling revealed changes in RNA levels of two-fold, or less in an hrpA mutant versus wild-type, suggesting that the enzyme functions largely or exclusively at the post-transcriptional level. In this regard, northern blot analysis of selected gene products highly regulated by HrpA (bb0603 [p66], bba74, bb0241 [glpK], bb0242 and bb0243 [glpA]) suggests a role for HrpA in the processing and translation of transcripts. In addition to being the first demonstration of RNA helicase activity for a bacterial HrpA, our data indicate that the post-transcriptional regulatory functions of this enzyme are essential for maintenance of the Lyme disease spirochete's enzootic cycle.


Asunto(s)
Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidad , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , ARN Helicasas/fisiología , Procesamiento Postranscripcional del ARN/genética , Animales , Proteínas Bacterianas/fisiología , Células Cultivadas , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Enfermedad de Lyme/genética , Masculino , Ratones , Ratones Endogámicos C3H , Organismos Modificados Genéticamente , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA